分析 (1)由2Sn=an+1-2n+1+1(n∈N*),可得n≥2時(shí),2Sn-1=an-2n+1,相減變形化為:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,即可證明.
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,可得bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.利用“裂項(xiàng)求和”與數(shù)列的單調(diào)性即可得出.
解答 證明:(1)∵2Sn=an+1-2n+1+1(n∈N*),∴n≥2時(shí),2Sn-1=an-2n+1,相減可得2an=an+1-2n-an,化為:$\frac{{a}_{n+1}}{{2}^{n+1}}$+1=$\frac{3}{2}(\frac{{a}_{n}}{{2}^{n}}+1)$,$\frac{{a}_{1}}{2}$+1=$\frac{3}{2}$,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$+1}為等比數(shù)列,首項(xiàng)與公比都為$\frac{3}{2}$.∴$\frac{{a}_{n}}{{2}^{n}}$+1=$(\frac{3}{2})^{n}$,化為:an=3n-2n.
(2)bn(3n-an)=$\frac{n+2}{n(n+1)}$,∴bn=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{{2}^{n}}$$(\frac{2}{n}-\frac{1}{n+1})$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$.
∴數(shù)列{bn}的前n項(xiàng)和為Tn=$(1-\frac{1}{2×2})$+$(\frac{1}{2×2}-\frac{1}{3×{2}^{2}})$+…+$(\frac{1}{n•{2}^{n-1}}-\frac{1}{(n+1)•{2}^{n}})$=1-$\frac{1}{(n+1)•{2}^{n}}$<1,
∴Tn<1.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和法”、等比數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | -$\frac{1}{3}$ | C. | -$\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 55 | B. | 45 | C. | 35 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2x | B. | y=$\frac{1}{{x}^{2}}$ | C. | y=ln|x| | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{9}{2}$ | C. | $\frac{8}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com