11.已知函數(shù)f(x)=sinx-2cosx,當(dāng)x=α?xí)rf(x)取得最大值,則cosα=-$\frac{2\sqrt{5}}{5}$.

分析 f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由x=α?xí)r,函數(shù)f(x)取得最大值,得到sinα-2cosα=$\sqrt{5}$,與sin2α+cos2α=1聯(lián)立即可求出cosα的值.

解答 解:f(x)=sinx-2cosx=$\sqrt{5}$($\frac{\sqrt{5}}{5}$sinx-$\frac{2\sqrt{5}}{5}$cosx)=$\sqrt{5}$sin(x-θ)
∵x=α?xí)r,函數(shù)f(x)取得最大值,
∴sin(α-θ)=1,即sinα-2cosα=$\sqrt{5}$,
又sin2α+cos2α=1,
聯(lián)立得(2cosα+$\sqrt{5}$)2+cos2α=1,解得cosα=-$\frac{2\sqrt{5}}{5}$.
故答案為:-$\frac{2\sqrt{5}}{5}$.

點(diǎn)評(píng) 此題考查了兩角和與差的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及正弦函數(shù)的定義域與值域,熟練掌握公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.${∫}_{0}^{\frac{π}{4}}$$\frac{cos2x}{cosx+sinx}$dx的值等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=an+1-2n+1+1(n∈N*),a1=1.
(1)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$+1}為等比數(shù)列,并求an;
(2)設(shè)數(shù)列{bn}滿足bn(3n-an)=$\frac{n+2}{n(n+1)}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證;Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≤0時(shí),f(x)=(x+2)2ex-1,那么函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.“-4≤b≤0”是“函數(shù)f(x)=x2+2x-b-3(-3≤x≤2)有兩個(gè)零點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知中心在原點(diǎn)的雙曲線的焦點(diǎn)坐標(biāo)是(0,5),且過(guò)點(diǎn)(0,3)則其標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=11C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某班有100名學(xué)生,一次考試后數(shù)學(xué)成績(jī)?chǔ)巍玁(100,102),若P(90≤ξ≤100)=0.34,則估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)?cè)?10分以上的人數(shù)為( 。
A.34B.32C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某三棱錐的三視圖如圖所示,則該三棱錐的四個(gè)面中,面積最大的面的面積是( 。
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案