【題目】學校藝術節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

【答案】B

【解析】A為一等獎,則甲,丙,丁的說法均錯誤,故不滿足題意,

B為一等獎,則乙,丙說法正確,甲,丁的說法錯誤,故滿足題意,

C為一等獎,則甲,丙,丁的說法均正確,故不滿足題意,

D為一等獎,則只有甲的說法正確,故不合題意,

故若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是B

故答案為:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知一個八面體的各條棱長為1,四邊形ABCD為正方形,下列說法

①該八面體的體積為;

②該八面體的外接球的表面積為;

E到平面ADF的距離為;

ECBF所成角為60°;

其中不正確的個數(shù)為

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校要對如圖所示的5個區(qū)域進行綠化(種花),現(xiàn)有4種不同顏色的花供選擇,要求相鄰區(qū)域不能種同一種顏色的花,則共有___________種不同的種花方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD,底面是以O為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M為BC上的一點,且BM= ,MP⊥AP.

(1)求PO的長;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記max{x,y}= ,min{x,y}= ,設 為平面向量,則(
A.min{| + |,| |}≤min{| |,| |}
B.min{| + |,| |}≥min{| |,| |}
C.max{| + |2 , | |2}≤| |2+| |2
D.max{| + |2 , | |2}≥| |2+| |2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(1)證明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】5名師生站成一排照相留念,其中教師1人,男生2人,女生2.

(1)求兩名女生相鄰而站的概率;

(2)求教師不站中間且女生不站兩端的概率.

查看答案和解析>>

同步練習冊答案