【題目】記max{x,y}= ,min{x,y}= ,設(shè) , 為平面向量,則( )
A.min{| + |,| ﹣ |}≤min{| |,| |}
B.min{| + |,| ﹣ |}≥min{| |,| |}
C.max{| + |2 , | ﹣ |2}≤| |2+| |2
D.max{| + |2 , | ﹣ |2}≥|
【答案】D
【解析】解:對(duì)于選項(xiàng)A,取 ⊥ ,則由圖形可知,根據(jù)勾股定理,結(jié)論不成立;
對(duì)于選項(xiàng)B,取 , 是非零的相等向量,則不等式左邊min{| + |,| ﹣ |}=0,顯然,不等式不成立;
對(duì)于選項(xiàng)C,取 , 是非零的相等向量,則不等式左邊max{| + |2 , | ﹣ |2}=| + |2=4 ,而不等式右邊=| |2+| |2=2 ,故C不成立,D選項(xiàng)正確.
故選:D.
將 , 平移到同一起點(diǎn),根據(jù)向量加減法的幾何意義可知, + 和 ﹣ 分別表示以 , 為鄰邊所做平行四邊形的兩條對(duì)角線,再根據(jù)選項(xiàng)內(nèi)容逐一判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= , g(x)=ex+m , 其中e=2.718….
(1)求f(x)在x=1處的切線方程;
(2)當(dāng)m≥﹣2時(shí),證明:f(x)<g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示四棱錐中,底面,四邊形中,,,,.
求四棱錐的體積;
求證:平面;
在棱上是否存在點(diǎn)異于點(diǎn),使得平面,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的部分圖象如圖所示.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為( )
A. 或 B. 2或 C. 2 D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某二手車交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求關(guān)于的回歸直線方程:(參考公式:, .)
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 36 B. 45 C. 99 D. 100
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐A﹣BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.
(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A﹣NP﹣M的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com