6.某小學(xué)星期一每班都排6節(jié)課,上午4節(jié)、下午2節(jié),若該校王老師在星期一這天要上3個班的課,每班l(xiāng)節(jié),且不能連上3節(jié)課(第4節(jié)和第5節(jié)不算連上),那么王老師星期一這天課的排法共有( 。
A.108種B.102種C.18種D.20種

分析 首先求得不受限制時,從6節(jié)課中任意安排3節(jié)排法數(shù)目,再求出其中上午連排3節(jié)的排法數(shù)目,進而計算可得答案.

解答 解:使用間接法,
首先求得不受限制時,從6節(jié)課中任意安排3節(jié),有A63=120種排法,
其中上午連排3節(jié)的有2A33=12種,
則這位教師一天的課表的所有排法有120-12=108種,
故選A.

點評 本題考查排列知識的應(yīng)用,使用間接法求解,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用秦九韶算法求f(x)=3x5+8x4-3x3+5x2+12x-6,當(dāng)x=2時,V3的值為( 。
A.55B.56C.57D.58

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠BAD=60°,AB=2AD,PD⊥底面ABCD.
(1)求證:AD⊥PB;
(2)若PD=AD=1,求三棱錐D-PAB的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=|sinx|(x∈[-π,π]),g(x)=x-2sinx(x∈[-π,π]),設(shè)方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數(shù)分別為m,n,t,則m+n+t=(  )
A.9B.13C.17D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\sqrt{3}$cos2x+2sin($\frac{3π}{2}$+x)sin(π-x),x∈R
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間
(2)已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且f(A)=-$\sqrt{3}$,a=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=12x的準(zhǔn)線與雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的兩條漸近線圍成的三角形的面積為( 。
A.6B.$6\sqrt{3}$C.9D.$9\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙兩名同學(xué)參加一項射擊游戲,兩人約定,其中任何一人毎射擊一次,擊中目標(biāo)得2分,未擊中目標(biāo)得0分,若甲、乙兩名同學(xué)射擊的命中率分別為$\frac{2}{5}$和p,且甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為2的概率為$\frac{9}{20}$,假設(shè)甲、乙兩人射擊互不影響.
(1)若乙射擊兩次,求其得分為2的概率;
(2)記甲、乙兩人各射擊一次所得分?jǐn)?shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為倡導(dǎo)節(jié)約用電,某地采用了階梯電價計費方法,具體為:每戶每月用電量不超過a度的每度0.6元;每戶每月用電量超過a度而不超過(a+120)度的,超出a度的部分每度0.65元;每戶每月電量超過(a+120)度的,超出(a+120)度的部分每度0.80元.
(1)寫出每戶每月用電量x度與支付費y元的函數(shù)關(guān)系;
(2)調(diào)查了該地120戶家庭去年的月平均用電量,結(jié)果如下表:
月平均用電量x(度)90140200260320
頻數(shù)1030303020
這120戶的月平均用電量的各頻率視為該地每戶月平均用電量的概率,若取a=1 80,用Y表示該地每戶的月平均用電費用,求Y的分布列和數(shù)學(xué)期望(精確到元)
(3)今年用電形勢嚴(yán)峻,該地政府決定適當(dāng)下調(diào)a的值(170<a<180),小明家響應(yīng)政府號召節(jié)約用電,預(yù)計他家今年的月平均電費為l15.2元,并且他家的月平均用電量X的分布列為:
月用電量X(度)160300180
p $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{3}$
請你求出今年調(diào)整的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=ex-ax2-ex+b,其中e為自然對數(shù)的底數(shù).
(Ⅰ)若曲線f(x)在y軸上的截距為-1,且在點x=1處的切線垂直于直線y=$\frac{1}{2}$x,求實數(shù)a,b的值;
(Ⅱ)記f(x)的導(dǎo)函數(shù)為g(x),g(x)在區(qū)間[0,1]上的最小值為h(a),求h(a)的最大值.

查看答案和解析>>

同步練習(xí)冊答案