16.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則該幾何體的外接球的體積為( 。
A.$\frac{\sqrt{3}}{3}$πB.πC.$\frac{26}{3}$πD.$\frac{32\sqrt{3}}{27}$π

分析 設(shè)外接球半徑為r,則有${({\sqrt{3}-r})^2}+1={r^2}$,解出利用體積計算公式即可得出.

解答 解:設(shè)外接球半徑為r,則有${({\sqrt{3}-r})^2}+1={r^2}$,
所以$r=\frac{{2\sqrt{3}}}{3}$,所以$V=\frac{4}{3}π{r^3}=\frac{{32\sqrt{3}}}{27}π$.
故選:D.

點(diǎn)評 本題考查了三棱錐的三視圖、球的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)滿足f′(2)=3,則$\underset{lim}{{x}_{0}→0}$$\frac{f(2+{2x}_{0})-f(2)}{{x}_{0}}$=( 。
A.3B.2C.$\frac{3}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知扇形的圓心角為$\frac{π}{3}$,半徑為2,則扇形的弧長為(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$4+\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,輸出S值為( 。
A.$-\frac{31}{15}$B.$-\frac{7}{5}$C.$-\frac{31}{17}$D.$-\frac{9}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.與球心距離為1的截球平面,所得的截面圓的面積為2π,則球的體積為( 。
A.8$\sqrt{3}$πB.4$\sqrt{3}$πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b∈R,i是虛數(shù)單位,若a-i與2+bi互為共軛復(fù)數(shù),且z=(a+bi)2,則z在復(fù)平面中所表示的點(diǎn)在第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若cosθ<0,且sin2θ<0,則角θ的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于( 。
A.55πB.75πC.77πD.65π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x-a|+|x-2|.
(1)若a=1,解不等式f(x)≤2;
(2)若存在x∈R,使得不等式f(x)≤$\frac{{t}^{2}+4}{t}$對任意t>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案