如圖,已知正方形ABCD的邊長為3,E為DC的中點(diǎn),AE與BD交于點(diǎn)F.則數(shù)學(xué)公式數(shù)學(xué)公式=________.

-
分析:由四邊形ABCD是正方形,求得AE的長,再由△ABE∽△FDE,根據(jù)相似三角形的對應(yīng)邊成比例,求得EF的大。倮昧韨向量的數(shù)量積的定義求得=cos(π-∠FDE)的值.
解答::∵四邊形ABCD是正方形,∴DE=CD=,∠ADE=90°,AB∥CD,∠FDE=45°.
∴AE===
∵AB∥CD,∴△ABF∽△EDF,
∴BF:DF=AB:DE=2,∴FD=BD=
,=cos(π-∠FDE)=•(-)=-,
故答案為-
點(diǎn)評:此題考查兩個向量的數(shù)量積的定義,相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及勾股定理,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點(diǎn).
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為1,過正方形中心O的直線MN分別交正方形的邊AB,CD于M,N,則當(dāng)
MN
BN
最小時,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求證:CM∥平面BDF;
(II)求異面直線CM與FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大;
(2)在線段AC上找一點(diǎn)P,使PF與AD所成的角為60°,試確定點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,其中A與A'重合,且BB′<DD′<CC′.
(1)證明AD′∥平面BB′C′C,并指出四邊形AB′C′D′的形狀;
(2)如果四邊形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的邊長為
6
,求平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊答案