8.若橢圓經(jīng)過(guò)原點(diǎn),且焦點(diǎn)分別為F1(1,0),F(xiàn)2(4,0),則其離心率為( 。
A.$\frac{3}{5}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

分析 先根據(jù)焦點(diǎn)坐標(biāo)求得橢圓的半焦距c,進(jìn)而根據(jù)原點(diǎn)到兩焦點(diǎn)的距離求得長(zhǎng)軸,進(jìn)而求得a,最后根據(jù)e=$\frac{c}{a}$求得答案.

解答 解:依題意可知2c=4-1=3,
∴c=$\frac{3}{2}$,
原點(diǎn)到兩焦點(diǎn)距離之和為2a=1+4=5,
∴a=$\frac{5}{2}$,
∴橢圓的離心率為e=$\frac{c}{a}$=$\frac{\frac{3}{2}}{\frac{5}{2}}=\frac{3}{5}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了橢圓的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了橢圓的定義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)求等比數(shù)列1,$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…的前9項(xiàng)和.
(2)如果等差數(shù)列{an}的前4項(xiàng)的和是10,前7項(xiàng)的和是28,求其前3項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{y≥\frac{1}{2}x}\\{y≤3x}\\{y≤-x+1}\end{array}}\right.$目標(biāo)函數(shù)z=ax+y僅在點(diǎn)($\frac{1}{4}$,$\frac{3}{4}$)取最大值,則實(shí)數(shù)a的取值范圍為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex-ln(x+1)
(1)求函數(shù)f(x)的最小值;
(2)證明:$e+{e^{\frac{1}{2}}}+{e^{\frac{1}{3}}}+…+{e^{\frac{1}{n}}}≥ln(n+1)(n∈{N^*},e為常數(shù))$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知A(3,0),B(0,3),C(cosα,sinα)
(1)若$\overrightarrow{AC}•\overrightarrow{BC}$=-1,求sinα-cosα的值;
(2)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{13}$,且α∈(0,π),求$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角的正弦值.(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知U={y|y=lnx,x>1},A={y|y=$\frac{1}{x}$,x>3},則∁UA=(  )
A.$(0,\frac{1}{3})$B.(0,+∞)C.[$\frac{1}{3},+∞$)D.(-∞,0]∪[$\frac{1}{3},+∞$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,正三角形ABC的中線AF與中位線DE相交于點(diǎn)G,已知△A′DE是△ADE繞邊DE旋轉(zhuǎn)過(guò)程中的一個(gè)圖形.現(xiàn)給出下列命題:
①恒有直線BC∥平面A′DE;
②恒有直線DE⊥平面A′FG,
③恒有平面A′FG⊥平面A′DE.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四組函數(shù),表示同一函數(shù)的是(  )
A.$f(x)=\sqrt{x^2}$與g(x)=xB.$f(x)={3^{{{log}_3}x}}$與g(x)=x
C.f(x)=2-x與$g(x)={({\frac{1}{2}})^x}$D.f(x)=|x-3|與g(x)=x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)x∈R,向量$\overrightarrow a=(2,x)$,$\overrightarrow b=(3,-2)$且$\overrightarrow a⊥\overrightarrow b$,則$|{\overrightarrow a+\overrightarrow b}|$=( 。
A.5B.$\sqrt{26}$C.2$\sqrt{6}$D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案