【題目】有一塊半徑為,圓心角為的扇形鋼板,需要將它截成一塊矩形鋼板,分別按圖1和圖2兩種方案截取(其中方案二中的矩形關于扇形的對稱軸對稱).
圖1:方案一 圖2:方案二
(1)求按照方案一截得的矩形鋼板面積的最大值;
(2)若方案二中截得的矩形為正方形,求此正方形的面積;
(3)若要使截得的鋼板面積盡可能大,應選擇方案一還是方案二?請說明理由,并求矩形鋼板面積的最大值.
科目:高中數學 來源: 題型:
【題目】某商家對他所經銷的一種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結果
如下表:
日銷售量 | 1 | 1.5 | 2 |
天數 | 10 | 25 | 15 |
頻率 | 0.2 |
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)求5天中該種商品恰好有兩天的銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元,表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線C的參數方程和直線的直角坐標方程;
(2)若直線與軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的長軸長為4,左、右頂點分別為,經過點的動直線與橢圓相交于不同的兩點(不與點重合).
(1)求橢圓的方程及離心率;
(2)求四邊形面積的最大值;
(3)若直線與直線相交于點,判斷點是否位于一條定直線上?若是,寫出該直線的方程. (結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知方程的曲線是圓.
(1)求實數的取值范圍;
(2)若直線與圓相交于、兩點,且(為坐標原點),求實數的值;
(3)當時,設為直線上的動點,過作圓的兩條切線、,切點分別為、,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C和橢圓1有公共的焦點,且離心率為.
(1)求雙曲線C的方程;
(2)經過點M(2,1)作直線l交雙曲線C于A、B兩點,且M為AB的中點,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:=2px經過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設O為原點,,,求證:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com