【題目】函數(shù)的部分圖像如圖所示的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象

(1)求函數(shù)的解折式

(2)在,滿足,且其外接圓的半徑,的面積的最大值

【答案】1sin2

【解析】

(1)由圖知4,解得ω2.

fsin1,φ2kπ(k∈Z),即φ2kπ(k∈Z)

由-<φ<,得φ,

f(x)sin

fsinsin

即函數(shù)yg(x)的解析式為g(x)sin.

(2)∵2sin2g1,

∴1cos(AB)1sin,

∵cos(AB)=-cosCsincos 2C,

于是上式變?yōu)?/span>cosCcos 2C,即cosC2cos2C1,整理得2cos2CcosC10

解得cosC=-1(),Cπ.

由正弦定理得2R4,解得c2,

于是由余弦定理得cosC=-a2b212ab≥2ab,ab≤4(當(dāng)且僅當(dāng)ab時(shí)等號成立)

SABCabsinCab.

∴△ABC的面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)對設(shè)備進(jìn)行技術(shù)升級改造,為了檢驗(yàn)改造效果,現(xiàn)從設(shè)備改造后生產(chǎn)的大量產(chǎn)品中抽取了100件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,統(tǒng)計(jì)整理為如圖所示的頻率分布直方圖:

(1)估計(jì)該企業(yè)所生產(chǎn)產(chǎn)品的質(zhì)量指標(biāo)的平均數(shù)和中位數(shù)(中位數(shù)保留一位小數(shù));

(2)若產(chǎn)品的質(zhì)量指標(biāo)在內(nèi),則該產(chǎn)品為殘次品,生產(chǎn)并銷售一件殘次品該企業(yè)損失1萬元;若產(chǎn)品的質(zhì)量指標(biāo)在范圍內(nèi),則該產(chǎn)品為特優(yōu)品,生產(chǎn)一件特優(yōu)品該企業(yè)獲利3萬元.把樣本中的殘次品和特優(yōu)品取出合并在一起,在從中任取2件產(chǎn)品進(jìn)行銷售,那么該企業(yè)收入為多少萬元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試證明:集合滿足

(1)對每個(gè),若,則一定不是的倍數(shù);

(2)對每個(gè)表示中的補(bǔ)集),且,必存在,,使的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個(gè),則實(shí)數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左、右焦點(diǎn)為F1,F2,設(shè)點(diǎn)F1,F2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成斜邊長為4的直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)AB,P為橢圓C上三點(diǎn),滿足,記線段AB中點(diǎn)Q的軌跡為E,若直線lyx1與軌跡E交于M,N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)及圓.

1)若直線過點(diǎn)且被圓截得的線段長為,的方程;

(2)求過點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)fx=4sin2x+)(x∈R),有下列命題:

①y=fx)的表達(dá)式可改寫為y=4cos2x﹣);

②y=fx)是以為最小正周期的周期函數(shù);

③y=fx)的圖象關(guān)于點(diǎn)對稱;

④y=fx)的圖象關(guān)于直線x=﹣對稱.

其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點(diǎn).

(1)求證:EF∥平面PCD;

(2)求直線DP與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案