【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過AD的平面分別交PB,PC于M,N兩點.
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點,
①求證:PB⊥DN;
②求二面角P-DN-A的余弦值.
【答案】(1)見解析;(2)見解析,
【解析】
(1)先證明BC∥平面ADNM,再證明MN∥BC.(2)①先證明PB⊥平面ADNM,再證明PB⊥DN. ②以A為坐標原點,直線AB為x軸,直線AD為y軸,直線AP為z軸,建立空間直角坐標系A-xyz,利用向量法求二面角P-DN-A的余弦值.
(1)證明因為底面ABCD為直角梯形,所以BC∥AD.
因為BC平面ADNM,AD平面ADNM,
所以BC∥平面ADNM.
因為BC平面PBC,平面PBC∩平面ADNM=MN,所以MN∥BC.
(2)①證明因為M,N分別為PB,PC的中點,PA=AB,所以PB⊥MA.
因為∠BAD=90°,所以DA⊥AB.
因為PA⊥底面ABCD,所以DA⊥PA.
因為PA∩AB=A,所以DA⊥平面PAB.
所以PB⊥DA.
因為AM∩DA=A,所以PB⊥平面ADNM.
因為DN平面ADNM,所以PB⊥DN.
②如圖,以A為坐標原點,直線AB為x軸,直線AD為y軸,直線AP為z軸,建立空間直角坐標系A-xyz,
則A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).
由①知,PB⊥平面ADNM,所以平面ADNM的法向量為=(-2,0,2).
設平面PDN的法向量為n=(x,y,z),
因為=(2,1,-2),=(0,2,-2),
所以
令z=2,則y=2,x=1.
所以n=(1,2,2),
所以cos<n,>=.
所以二面角P-DN-A的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,∠ABC=,D是棱AC的中點,且AB=BC=BB1=2.
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=4,點E在線段AB上.過點E作EF∥BC交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB.
(2)試問:當點E在線段AB上移動時,二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于概率和統(tǒng)計的幾種說法:
①10名工人某天生產同一種零件,生產的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a,b,c的大小關系為c>a>b;
②樣本4,2,1,0,-2的標準差是2;
③在面積為S的△ABC內任選一點P,則隨機事件“△PBC的面積小于”的概率為;
④從寫有0,1,2,…,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.
其中正確說法的序號有________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為 ,兩準線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1 , 過點F2作直線PF2的垂線l2 .
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線l1 , l2的交點Q在橢圓E上,求點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示.
(1) 證明:AD⊥平面PBC;
(2) 在∠ACB的平分線上確定一點Q,使得PQ∥平面ABD,并求此時PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com