分析 根據(jù)函數(shù)各段的自變量范圍將定積分表示-1到0以及0到1上的定積分的和,分別計算定積分值即可.
解答 解:f(x)=$\left\{\begin{array}{l}{x^2}+3\\-x\end{array}\right.\begin{array}{l}x≥0\\ x<0\end{array}$,則$\int_{-1}^1$f(x)dx=${∫}_{-1}^{0}(-x)dx+{∫}_{0}^{1}({x}^{2}+{3}^{x})dx$=(-$\frac{1}{2}{x}^{2}$)|${\;}_{-1}^{0}$+($\frac{1}{3}{x}^{3}+\frac{{3}^{x}}{ln3}$)|${\;}_{0}^{1}$=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{3}{ln3}$-$\frac{1}{ln3}$=$\frac{5}{6}+\frac{2}{ln3}$;
故答案為:$\frac{5}{6}+\frac{2}{ln3}$.
點評 本題考查了定積分的運算法則的運用;關(guān)鍵是根據(jù)已知分段函數(shù)將定積分寫成兩個定積分的和的形式.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com