4.下列說(shuō)法正確的是( 。
①|(zhì)$\sqrt{(x+4)^{2}+{y}^{2}}$|-|$\sqrt{(x-4)^{2}+{y}^{2}}$=0        
②|$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$=14
③|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=6         
④|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=18.
A.①表示無(wú)軌跡 ②的軌跡是射線B.②的軌跡是橢圓 ③的軌跡是雙曲線
C.①的軌跡是射線④的軌跡是直線D.②、④均表示無(wú)軌跡

分析 利用幾何意義,結(jié)合橢圓、雙曲線的定義,即可得出結(jié)論.

解答 解:$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距離的差;$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距離的和,
結(jié)合選項(xiàng),可知②的軌跡是橢圓 ③的軌跡是雙曲線,
故選B.

點(diǎn)評(píng) 本題考查橢圓、雙曲線的定義,考查學(xué)生分析解決問(wèn)題的能力,正確理解橢圓、雙曲線的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義域?yàn)镽的函數(shù)f(x)對(duì)任意x都有f(1+x)=f(1-x),且其導(dǎo)數(shù)f′(x)滿足(x-1)f′(x)>0,則當(dāng)2<m<4時(shí),有( 。
A.f(2)>f(2m)>f(log2m)B.f(log2m)>f(2m)>f(2)C.f(2m)>f(log2m)>f(2)D.f(2m)>f(2)>f(log2m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式(x+1)(2-x)≥0的解集為( 。
A.{x|-l≤x≤2}B.{x|-1<x<2}C.{x|x≥2,或-1≤-1}D.{x|x>2,或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=(x2+mx+m)e-x
(1)當(dāng)m=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若m≤2,證明:當(dāng)x≥0時(shí),f(x)≤2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)已知a為常數(shù),且0<a<1,函數(shù)f(x)=(1+x)a-ax,求函數(shù)f(x)在x>-1上的最大值;
(2)若a,b均為正實(shí)數(shù),求證:ab+ba>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)點(diǎn)M(5,$\frac{3}{2}$),且以直線y=±$\frac{1}{2}$x為漸近線的雙曲線方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若拋物線y2=8x上一點(diǎn)P到其焦點(diǎn)的距離為9,則點(diǎn)P的坐標(biāo)為( 。
A.(7,±$\sqrt{14}$)B.(14,±$\sqrt{14}$)C.(7,±2$\sqrt{14}$)D.(-7,±2$\sqrt{14}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)集合A={x|x2+x≤0,x∈z},則集合A={-1,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知橢圓的標(biāo)準(zhǔn)方程為${x^2}+\frac{y^2}{10}=1$,則橢圓的焦點(diǎn)坐標(biāo)為( 。
A.(-3,0),(3,0)B.(0,-3),(0,3)C.(-$\sqrt{10}$,0),($\sqrt{10}$,0)D.(0,-$\sqrt{10}$),(0,$\sqrt{10}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案