9.已知A={1,2,3,4},B={1,2},若B∪C=A,則滿足條件的集合C有4個.

分析 由題意列舉集合C的所有可能情況,得到集合B的個數(shù).

解答 解:A={1,2,3,4},B={1,2},B∪C=A,所以C至少含有,3,4兩個元素,
所以C的可能情況為:{3,4},{3,4,1},{3,4,2},{3,4,1,2}.
故答案為:4.

點評 本題考查集合的基本運算,集合中元素的基本性質(zhì),考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3+bx2+cx,(a≠0).
(1)若函數(shù)f(x)有三個零點x1,x2,x3且x1+x2+x3=$\frac{9}{2}$,x1x3=-12,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f′(1)=-$\frac{3}{2}$a,9a>2c>4b,試問:導(dǎo)函數(shù)f′(x)在區(qū)間(0,2)內(nèi)是否有零點,并說明理由.
(3)在(2)的條件下,若導(dǎo)函數(shù)f′(x)的兩個零點之間的距離不小于$\sqrt{3}$,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知四棱錐P-ABCD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,∠BDA=60°.
(1)證明:BC⊥PB;
(2)若PB=3,求點P到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知i為虛數(shù)單位,復(fù)數(shù)z1=a+i,z2=2-i,且|z1|=|z2|,則實數(shù)a的值為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P和不共線三點A,B,C四點共面且對于空間任一點O,都有$\overrightarrow{OP}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$+λ$\overrightarrow{OC}$,則λ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,$\sqrt{11}$,…,則$\sqrt{23}$是該數(shù)列的第8項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=loga(-x2+log2ax)對任意x∈(0,$\frac{1}{2}$)都有意義,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{128}$,$\frac{1}{2}$)B.[$\frac{1}{64}$,$\frac{1}{2}$)C.[$\frac{1}{32}$,$\frac{1}{2}$)D.[$\frac{1}{16}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓方程$\frac{x^2}{4}+\frac{y^2}{k}$=1的離心率為$\frac{{\sqrt{2}}}{2}$,則k的值為2或8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知從球的一內(nèi)接長方體的一個頂點出發(fā)的三條棱長分別為3,4,5,則此球的表面積為( 。
A.25πB.50πC.125πD.均不正確

查看答案和解析>>

同步練習(xí)冊答案