3.計算(式中各字母均為正數(shù))
(1)$(\frac{{8{s^6}{t^{-3}}}}{{125{r^9}}}{)^{-\frac{2}{3}}}$
(2)$(3{x^{\frac{1}{4}}}+2{y^{-\frac{1}{2}}})(3{x^{\frac{1}{4}}}-2{y^{-\frac{1}{2}}})$.

分析 (1)利用有理數(shù)指數(shù)冪的性質(zhì)、運算法則求解.
(2)利用有理數(shù)指數(shù)冪的性質(zhì)、運算法則求解.

解答 解:(1)∵s>0,t>0,
∴$(\frac{{8{s^6}{t^{-3}}}}{{125{r^9}}}{)^{-\frac{2}{3}}}$=[($\frac{2{s}^{2}{t}^{-1}}{5{r}^{3}}$)3]${\;}^{-\frac{2}{3}}$
=($\frac{2{s}^{2}{t}^{-1}}{5{r}^{3}}$)-2=$\frac{25{r}^{6}{t}^{2}}{4{s}^{4}}$.
(2)∵x>0,y>0,
∴$(3{x^{\frac{1}{4}}}+2{y^{-\frac{1}{2}}})(3{x^{\frac{1}{4}}}-2{y^{-\frac{1}{2}}})$=($3{x}^{\frac{1}{4}}$)2-($2{y}^{-\frac{1}{2}}$)2=9x${\;}^{\frac{1}{2}}$-4y-1

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意有理數(shù)指數(shù)冪的性質(zhì)、運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖,其正視圖中的曲線部分為半圓,則該幾何體的體積是( 。
A.4+$\frac{3}{2}$πB.6+$\frac{3}{2}$πC.6+3πD.12+$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,且$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\frac{5}{2}\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}的前n項和為Sn,且a1=2,S5=30,數(shù)列{bn}的前n項和為Tn,且Tn=2n-1.
(I)求數(shù)列{an},{bn}的通項公式;
(II)設(shè)cn=lnbn+(-1)nlnSn,求數(shù)列{cn}的前n項和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若實數(shù)x、y滿足不等式組$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,則實數(shù)m的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-5x-6=0},則A∩N*=( 。
A.B.{-1}C.{1}D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,若b,c,a成等比數(shù)列,且a=$\frac{1}{2}$b,則cosA=$\frac{5\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個小組的頻率之比為1:2:3,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數(shù)為10,則第4小組顧客的人數(shù)是(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面表述不正確的是( 。
A.終邊在x軸上角的集合是{α|α=kπ,k∈Z}
B.終邊在y軸上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.終邊在坐標(biāo)軸上的角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.終邊在直線y=-x上角的集合是 $\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

同步練習(xí)冊答案