10.已知過定點(diǎn)P(2,0)的直線l與曲線y=$\sqrt{2-x^2}$相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大時(shí),直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號(hào)是⑤.(寫出所有正確答案的序號(hào))

分析 當(dāng)△AOB面積取最大值時(shí),OA⊥OB,圓心O(0,0)到直線直線l的距離為1,由此能求出直線l的斜率.

解答 解:當(dāng)△AOB面積取最大值時(shí),OA⊥OB,
∵過定點(diǎn)P(2,0)的直線l與曲線y=$\sqrt{2-x^2}$相交于A、B兩點(diǎn),
∴圓心O(0,0),半徑r=$\sqrt{2}$,
∴OA=OB=$\sqrt{2}$,AB=2,
∴圓心O(0,0)到直線直線l的距離為1,
當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=2,不合題意;
當(dāng)直線l的斜率存在時(shí),直線l的方程為y=k(x-2),
圓心(0,0)到直線l的距離d=$\frac{|-2k|}{\sqrt{{k}^{2}+1}}$=1,
解得k=$±\frac{\sqrt{3}}{3}$,
由題意可知當(dāng)△AOB的面積取最大時(shí),直線的傾斜角是150°.
故答案為⑤.

點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系及其三角形面積的計(jì)算,屬于中檔試題,著重考查了數(shù)形結(jié)合思想及轉(zhuǎn)化與化歸思想的應(yīng)用,在與圓有關(guān)的問題解答中,特別注意借助圖形轉(zhuǎn)化為與圓心的關(guān)系,是解答的一種常見方法,本題的解答當(dāng)△AOB面積取最大值時(shí),OA⊥OB,此時(shí)圓心O到直線的距離為1是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.命題“設(shè)x,y∈Z,若x,y是奇數(shù),則x+y是偶數(shù)”的等價(jià)命題是設(shè)x,y∈Z,若x+y不是偶數(shù),則x,y不都是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題正確的是( 。
A.若ac>bc⇒a>bB.若a2>b2⇒a>bC.若$\frac{1}{a}>\frac{1}⇒a<b$D.若$\sqrt{a}<\sqrt⇒{a^3}<{b^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖中的陰影部分表示的集合是( 。
A.M∩NB.M∪∁NC.M∩∁ND.M∪N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知平面外一條直線上有兩個(gè)不同的點(diǎn)到這個(gè)平面的距離相等,則這條直線與該平面的位置關(guān)系是平行或相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a=log23,b=log2π,c=($\frac{2}{3}$)0.1,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知無窮等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{{3}^{n}}$+a(n∈N*),且a是常數(shù),則此無窮等比數(shù)列的各項(xiàng)和為-1.(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若直線ax+by-1=0(a>0,b>0)經(jīng)過曲線y=2+sinπx(0<x<2)的對(duì)稱中心,則$\frac{2}{a}$+$\frac{1}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.定義在(0,+∞)上的增函數(shù)f(x)滿足條件:f(xy)=f(x)f(y)對(duì)所有正實(shí)數(shù)x,y均成立,且f(2)=4.
(1)求f(1)和f(8)的值;
(2)解關(guān)于x的不等式:16f($\frac{1}{x-3}$)≥f(2x+1).

查看答案和解析>>

同步練習(xí)冊(cè)答案