13.復(fù)平面內(nèi)$\frac{2+i}{1-i}$的共軛復(fù)數(shù)所對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)平面內(nèi)$\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}$=$\frac{1+3i}{2}$的共軛復(fù)數(shù)$\frac{1}{2}-\frac{3i}{2}$所對(duì)應(yīng)的點(diǎn)$(\frac{1}{2},-\frac{3}{2})$在第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知|tanx|=2,x∈($\frac{π}{2}$,π).
(1)求tan2x的值;
(2)求sin(x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=e-2x,則f′(x)=(  )
A.e-2xB.-e-2xC.2e-2xD.-2e-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.2015年元旦前夕,某市統(tǒng)計(jì)局統(tǒng)計(jì)了該市2014年10戶家庭的年收入和年飲食支出的統(tǒng)計(jì)資料如表:
年收入x/萬(wàn)元24466677810
年支出y/萬(wàn)元0.91.41.62.02.11.91.82.12.22.3
(1)如果已知y與x是線性相關(guān)的,求回歸方程;
(2)若某家庭年收入為9萬(wàn)元,預(yù)測(cè)其年飲食支出.
(參考數(shù)據(jù):$\sum_{i=1}^{10}{x_i}{y_i}=117.7$,$\sum_{i=1}^{10}{{x_i}^2}=406$)
附:回歸直線的斜率和截距的最小二乘法公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=4x-1,則 f(2)+f′(2)=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{2}$,且圖象上一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-2).則f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在2014年APEC領(lǐng)導(dǎo)人會(huì)議期間,被人們親切叫做“藍(lán)精靈”的大學(xué)生志愿者參與服務(wù),已知志愿者中?粕⒈究粕、碩士生、博士生的人數(shù)比例為5:15:9:1,擬采用分層抽樣的方法,從志愿者中抽取一個(gè)120人的樣本進(jìn)行調(diào)查,則應(yīng)從碩士生中抽。ā 。
A.60名B.36名C.20名D.4名

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中.
(Ⅰ)證明:BD1⊥A1D;
(Ⅱ)求$\overrightarrow{B{C}_{1}}$與$\overrightarrow{AC}$夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知非空集合M滿足:若x∈M,則$\frac{1}{1-x}$∈M,則當(dāng)4∈M時(shí),集合M的所有元素之積等于-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案