15.已知在△ABC中,點A(-1,0),B(0,$\sqrt{3}$),C(1,-2).
(1)求AB邊中線所在直線的方程;
(2)求△ABC的面積.

分析 (1)求出AB中點D的坐標,即可求AB邊中線所在直線的方程;
(2)求出|AB|=2,C到直線AB的距離,即可求△ABC的面積.

解答 解:(1)點A(-1,0),B(0,$\sqrt{3}$),中點D(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
∴AB邊中線所在直線的方程$\frac{y+2}{\frac{\sqrt{3}}{2}+2}=\frac{x-1}{-\frac{1}{2}-1}$;
(2)直線AB的方程為y=$\sqrt{3}$(x+1),
|AB|=2,C到直線AB的距離d=$\frac{2\sqrt{3}+2}{\sqrt{3+1}}$=$\sqrt{3}$+1,
∴△ABC的面積S=$\frac{1}{2}×2×(\sqrt{3}+1)$=$\sqrt{3}$+1.

點評 本題考查直線方程,考查三角形面積的計算,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知橢圓$C:\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦點分別為F1、F2,過F2的直線交橢圓C于P、Q兩點,若|F1P|+|F1Q|=10,則|PQ|等于(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.過點P(3,2)且在兩坐標軸上的截距相等的直線方程是( 。
A.x-y-1=0B.x+y-5=0或2x-3y=0
C.x+y-5=0D.x-y-1=0或2x-3y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知橢圓的兩焦點坐標分別是(-2,0)、(2,0),并且過點(2$\sqrt{3}$,$\sqrt{3}$),則該橢圓的標準方程是$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若冪函數(shù)y=xm是偶函數(shù),且x∈(0,+∞)時為減函數(shù),則實數(shù)m的值可能為( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4x-2,x≥0}\\{{x^2}+4x-2,x<0}\end{array}}\right.$,則對任意x1,x2,x3∈R,若0<|x1|<|x2|<2<|x3|,則下列不等式一定成立的是( 。
A.f(x1)-f(x2)>0B.f(x1)-f(x3)>0C.f(x1)-f(x2)<0D.f(x1)-f(x3)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設實數(shù)a∈R,函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)當x∈(-1,1)時,求滿足不等式f(1-m)+f(1-m2)<0的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷(guǐ)影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中115.1$\frac{4}{6}$寸表示115寸1$\frac{4}{6}$分(1寸=10分).
 節(jié)氣冬至小寒
(大雪)
大寒
(小雪)
立春
(立冬)
雨水
(霜降)
驚蟄
(寒露)
春分
(秋分)
清明
(白露)
谷雨
(處暑)
立夏
(立秋)
小滿
(大暑)
芒種
(小暑)
夏至
晷影長
(寸)
135125$\frac{5}{6}$115.1$\frac{4}{6}$105.2$\frac{4}{6}$95.3$\frac{2}{6}$$85.4\frac{2}{6}$75.566.5$\frac{5}{6}$$55.6\frac{4}{6}$45.7$\frac{3}{6}$35.8$\frac{2}{6}$25.9$\frac{1}{6}$16.0
已知《易經(jīng)》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長應為( 。
A.72.4寸B.81.4寸C.82.0寸D.91.6寸

查看答案和解析>>

同步練習冊答案