已知關(guān)于x的不等式:<1.
(1) 當(dāng)a=1時,解該不等式;
(2) 當(dāng)a>0時,解該不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知多面體ABCDFE中, 四邊形ABCD為矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分別為AB、FC的中點,且AB = 2,AD = EF = 1.
(Ⅰ)求證:AF⊥平面FBC;
(Ⅱ)求證:OM∥平面DAF;
(Ⅲ)設(shè)平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
要在墻上開一個上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框為定長的條件下,要使窗戶能夠透過最多的光線,窗戶應(yīng)設(shè)計成怎樣的尺寸?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)f(x)=x2+ax+3.
(1) 當(dāng)x∈R時,f(x)≥a恒成立,求a的取值范圍;
(2) 當(dāng)x∈[-2,2]時,f(x)≥a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表:
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價 | |
黃瓜 | 4 t | 1.2萬元 | 0.55萬元 |
韭菜 | 6 t | 0.9萬元 | 0.3萬元 |
為使一年的種植的總利潤最大,那么黃瓜和韭菜的種植面積分別為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com