【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)令,是否存在實(shí)數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時,證明:.
【答案】(1);(2)存在實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時g(x)有最小值3;(3)詳見解析.
【解析】
試題分析:(1)首先將問題轉(zhuǎn)化為在[1,2]上恒成立,然后將其轉(zhuǎn)化為二次函數(shù)的圖像及其性質(zhì)即可得出所求的結(jié)果;(2)首先假設(shè)存在實(shí)數(shù)a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,并求出其導(dǎo)函數(shù),然后對其進(jìn)行分類討論:①當(dāng)a≤0時;②當(dāng)時;③當(dāng)時,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并求出其最值即可得出所求的結(jié)果;(3)首先令F(x)=e2x﹣lnx,由(2)知,F(xiàn)(x)min,然后令,并求出其導(dǎo)函數(shù),進(jìn)而得出其最大值,最后得出不等式成立.
試題解析:(1)在[1,2]上恒成立,
令h(x)=2x2+ax﹣1,有得,得.
(2)假設(shè)存在實(shí)數(shù)a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,
①當(dāng)a≤0時,g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae﹣1=3,(舍去),
②當(dāng)時,g(x)在上單調(diào)遞減,在上單調(diào)遞增
∴,a=e2,滿足條件.
③當(dāng)時,g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae﹣1=3,(舍去),
綜上,存在實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時g(x)有最小值3.
(3)令F(x)=e2x﹣lnx,由(2)知,F(xiàn)(x)min=3.令,,
當(dāng)0<x≤e時,'(x)≥0,φ(x)在(0,e]上單調(diào)遞增∴
∴,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬元。該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖。
(Ⅰ)求;
(Ⅱ)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(Ⅲ)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于,兩點(diǎn),且,求的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,為的中點(diǎn).
(1)若,求證:;
(2)若,且,點(diǎn)在線段上,試確定點(diǎn)的位置,使二面角大小為,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為(為坐標(biāo)原點(diǎn)),如圖,若拋物線與軸的交點(diǎn)為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)設(shè),為拋物線上的一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓于點(diǎn)、兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上,且.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠經(jīng)過市場調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價格(單位:萬元/噸)滿足關(guān)系式(其中為常數(shù)),已知銷售價格為萬元/噸時,每天可售出該產(chǎn)品噸.
(1)求的值;
(2)若該產(chǎn)品的成本價格為萬元/噸,當(dāng)銷售價格為多少時,該產(chǎn)品每天的利潤最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面平面,四邊形是正方形,四邊形是菱形,且,,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線段上的動點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若方程有兩個小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式對任意恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com