【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.
【答案】
(1)解:由題設(shè)知, , ,又a2﹣b2=c2,
解得a=2,b=1.
故所求橢圓C的方程是
(2)解:AB:y=k1x+1,則有 ,化簡得 ,
對(duì)于直線AD:y=k2x+1,同理有 ,
于是k1,k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的兩實(shí)根,故k1k2=1.
考慮到r→1時(shí),D是橢圓的下頂點(diǎn),B趨近于橢圓的上頂點(diǎn),故BD若過定點(diǎn),則猜想定點(diǎn)在y軸上.
由 ,得 ,于是有 .
直線BD的斜率為 ,
直線BD的方程為 ,
令x=0,得 ,
故直線BD過定點(diǎn)
【解析】(1)利用已知條件求出a,b即可求解橢圓C的方程.(2)AB:y=k1x+1,則有 ,化簡得 ,直線AD:y=k2x+1,同理有 ,推出k1 , k2是方程(1﹣r2)k2﹣2k+1﹣r2=0的兩實(shí)根,故k1k2=1.考慮到r→1時(shí),D是橢圓的下頂點(diǎn),B趨近于橢圓的上頂點(diǎn),故BD若過定點(diǎn),則猜想定點(diǎn)在y軸上.聯(lián)立直線與橢圓方程,求出相關(guān)點(diǎn)的坐標(biāo),求出直線BD的方程,推出直線BD過定點(diǎn).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線: ,直線與拋物線交于, 兩點(diǎn).
(1)若直線, 的斜率之積為,證明:直線過定點(diǎn);
(2)若線段的中點(diǎn)在曲線: 上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)校總務(wù)辦公室用1000萬元從政府購得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬元.
若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬元,綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和,寫出的表達(dá)式;
為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且滿足: ①|(zhì)a1|≠|(zhì)a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)數(shù)列{an}能否是等比數(shù)列?請(qǐng)說明理由;
(3)求證:當(dāng)r=2時(shí),數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)總體分為A,B兩層,其個(gè)體數(shù)之比為5:1,用分層抽樣方法從總體中抽取一個(gè)容量為12的樣本,已知B層中甲、乙都被抽到的概率為 ,則總體中的個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)和動(dòng)直線l:y=kx+b(k,b是參變量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)兩點(diǎn),直角坐標(biāo)系原點(diǎn)為O,記直線OA,OB的斜率分別為kOAkOB= 恒成立,則當(dāng)k變化時(shí)直線l恒經(jīng)過的定點(diǎn)為( )
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣n.
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的長方形ABCD中,動(dòng)圓Q的半徑為1,圓心Q在線段BC(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量 =m +n (m,n為實(shí)數(shù)),則m+n的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取100名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | ① | 0.350 |
第3組 | [170,175) | 30 | ② |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185) | 10 | 0.100 |
合計(jì) | 100 | 1.00 |
(1)請(qǐng)先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖,并從頻率分布直方圖中求出中位數(shù)(中位數(shù)保留整數(shù));
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求:第4組至少有一名學(xué)生被考官A面試的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com