【題目】下列各組函數(shù)是同一函數(shù)的是( )
A. 與
B. 與g(x)=2x﹣1
C.f(x)=x0與g(x)=1
D.f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1
【答案】D
【解析】解:對于A: 與 定義域都是為x≤0,但兩個函數(shù)的對應(yīng)法則不相同,所以不是相同函數(shù),故A不正確.對于B:f(x)= =x+1(x≠2),與g(x)=2x+1(x∈R)的定義域不同,∴不是同一函數(shù);故B不正確.
對于C:g(x)=1(x∈R),與f(x)=x0=1(x≠0)的定義域不同,∴不是同一函數(shù).故C不正確.
對于D:f(x)=x2﹣2x﹣1的定義域是R,g(t)=t2﹣2t﹣1的定義域是R,兩個函數(shù)的對應(yīng)法則相同,所以是相同函數(shù),故D正確.
故選D.
【考點精析】關(guān)于本題考查的判斷兩個函數(shù)是否為同一函數(shù),需要了解只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c(a≤b≤c),且bcosC+ccosB=2asinA. (Ⅰ)求角A;
(Ⅱ)求證: ;
(Ⅲ)若a=b,且BC邊上的中線AM長為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的最值;
(2)當時,對任意都有恒成立,求實數(shù)的取值范圍;
(3)當時,設(shè)函數(shù),數(shù)列滿足, ,求證: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓柱的上、下底面圓的直徑, 是邊長為2的正方形, 是底面圓周上不同于兩點的一點, .
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解春季晝夜溫差大小與種子發(fā)芽多少之間的關(guān)系,現(xiàn)從4月的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每50顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月6日 | 4月12日 | 4月19日 | 4月27日 |
溫差 | 2 | 3 | 5 | 4 | 1 |
發(fā)芽數(shù)顆 | 9 | 11 | 15 | 13 | 7 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于13”的概率;
(2)若4月30日晝夜溫差為,請根據(jù)關(guān)于的線性回歸方程估計該天種子浸泡后的發(fā)芽數(shù).
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x| <0,x∈R},B={x|x2﹣2x﹣m<0,x∈R}
(1)當m=3時,求A∩(RB);
(2)若A∩B={x|﹣1<x<4},求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com