13.給出下列命題:
①函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)的一個(gè)對(duì)稱中心為(-$\frac{5π}{12}$,0);
②若α,β為第一象限角,且α>β,則tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在實(shí)數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
④在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a=40,b=20,B=25°,則△ABC必有兩解.
⑤函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,得到y(tǒng)=sin(2x+$\frac{π}{4}$)的圖象.
其中正確命題的序號(hào)是①③④ (把你認(rèn)為正確的序號(hào)都填上).

分析 由f($-\frac{5π}{12}$)=0判斷①正確;舉例說明②錯(cuò)誤;由向量關(guān)系的條件判斷③正確;根據(jù)邊角關(guān)系,判斷三角形解的個(gè)數(shù)可得④正確;由函數(shù)的圖象平移說明⑤錯(cuò)誤.

解答 解:①,∵f($-\frac{5π}{12}$)=4cos(-2×$\frac{5π}{12}+\frac{π}{3}$)=4cos$\frac{π}{2}$=0,∴函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)的一個(gè)對(duì)稱中心為(-$\frac{5π}{12}$,0),故①正確;
②,α=390°,β=60°,均為第一象限角,且α>β,但tanα<tanβ,故②錯(cuò)誤;
③,由|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,可知$\overrightarrow=\overrightarrow{0}$或$\overrightarrow{a}$、$\overrightarrow$共線反向,則存在實(shí)數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$,故③正確;
④,在△ABC中,由a=40,b=20,B=25°,可得asinB=40sin25°<40sin30°=40×$\frac{1}{2}$=20,
即asinB<b<a,∴△ABC必有兩解,故④正確;
⑤,函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,得到y(tǒng)=sin2(x+$\frac{π}{4}$)=cos2x的圖象,故⑤錯(cuò)誤.
∴正確的命題是①③④.
故答案為:①③④.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了三角函數(shù)的性質(zhì),考查向量關(guān)系的條件,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,則圓C的內(nèi)接正三角形的面積為(  )
A.4B.8C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增加的,又f(-3)=0,則x•f(x)<0的解集是(  )
A.{x|-3<x<0,或x>3}B.{x|x<-3,或0<x<3}C.{x|-3<x<0,或0<x<3}D.{x|x<-3,或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則z=2x+y的最小值為(  )
A.1B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={x∈R|$\frac{1-x}{x}≤0$},N={x∈R|y=ln(x-1)},則M∩N( 。
A.B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.空間四邊形ABCD中,AB=CD且AB與CD所成的角為30°,E、F分別為BC、AD的中點(diǎn),則EF與AB所成角的大小為15°或75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)集合A={x|x≥-1},B={x|-2≤x≤2},則A∪B={x|x≥-2}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列數(shù)值大小比較中,正確的是( 。
A.(-2)2>(-3)2B.0.20.3>0.20.1C.30.5<30.2D.lg5<lg6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在矩形ABCD中,AB=3,過點(diǎn)A向∠BAD所在區(qū)域等可能任作一條射線AP,已知事件“射線AP與線段BC有公共點(diǎn)”發(fā)生的概率為$\frac{1}{3}$,則BC邊的長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案