如圖,在四棱錐中,平面平面,,,中點,中點.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

(1)根據(jù)線面平行的判定定理來得到證明,關鍵是證明CE//DF
(2)

解析試題分析:(1)證明:取PA中點F,連EF,F(xiàn)D
∵E為PB中點 故EFAB   又DCAB
∴EFDC    CEFD為平行四邊形
CE//DF      DF平面PAD,CE平面PAD
∴CE//平面PAD                    6分
(II)  ABCD為直角梯形,AB=2a,CD="BC=" a

PA=PD    H為AD中點故  PH⊥AD
平面PAD⊥平面ABCD    ∴PH⊥平面ABCD
                
E為PB中點,故E到平面BCD距離為

        12分
考點:錐體的體積,線面平行
點評:主要是考查了棱錐中的性質以及體積公式和線面平行的證明。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,菱形的邊長為6,,.將菱形沿對角線折起,得到三棱錐 ,點是棱的中點,.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是一個直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設點O是AB的中點。

(1)證明:OC∥平面A1B1C1
(2)求異面直線OC與AlBl所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體中,四邊形是邊長為2的正方形,平面平面,平面都與平面垂直,且、、都是正三角形。

(1)求證:;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.

(Ⅰ)求證:C1B⊥平面A1B1C1
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知斜三棱柱,側面與底面垂直,∠,且,.

(1)試判斷與平面是否垂直,并說明理由;
(2)求側面與底面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在正方體,分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知平面是正三角形,且.

(1)設是線段的中點,求證:∥平面
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案