10.已知{an}是等比數(shù)列,an>0,a3=12,且a2,a4,a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3,b9=a5,求b3+b5+b7+…+b2n+1

分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.
(2)利用等比數(shù)列與等差數(shù)列的通項公式、求和公式即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
∵an>0,可得q>0.
∵a2,a4,a2+36成等差數(shù)列.∴2a4=a2+a2+36,
∴2a3q=2$\frac{{a}_{3}}{q}$+36,即2×12q=2×$\frac{12}{q}$+36,化為:2q2-3q-2=0,
解得q=2.
∴${a}_{1}×{2}^{2}$=12,解得a1=3.
∴an=3×2n-1
(2)由(1)可得:
b3=a3=12,b9=a5=3×24=48.
設(shè)等差數(shù)列{bn}的公差為d,則b1+2d=12,b1+8d=48,
解得b1=0,d=6.
∴bn=6(n-1).
∴b2n+1=12n.
∴b3+b5+b7+…+b2n+1=12×$\frac{n(n+1)}{2}$=6n2+6n.

點評 本題考查了等差數(shù)列與等比數(shù)列與等差數(shù)列的通項公式、求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了得到函數(shù)$y=2sin(x+\frac{π}{6})cos(x+\frac{π}{6})$的圖象,只需把函數(shù)y=sin2x的圖象上所有的點( 。
A.向左平行移動$\frac{π}{12}$個單位長度B.向右平行移動$\frac{π}{12}$個單位長度
C.向左平行移動$\frac{π}{6}$個單位長度D.向右平行移動$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(x+a)ln(a-x).
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在x=0處的切線方程;
(Ⅱ)當(dāng)a=e時,求證:函數(shù)f(x)在x=0處取得最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C1:x2+y2=r2(r>0)與直線l0:y=$\frac{1}{2}x+\frac{3}{2}\sqrt{5}$相切,點A為圓C1上一動點,AN⊥x軸于點N,且動點M滿足$\overrightarrow{OM}+2\overrightarrow{AM}=({2\sqrt{2}-2})\overrightarrow{ON}$,設(shè)動點M的軌跡為曲線C.
(1)求動點M的軌跡曲線C的方程;
(2)若直線l與曲線C相交于不同的兩點P、Q且滿足以PQ為直徑的圓過坐標(biāo)原點O,求線段PQ長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy中,將不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域繞x軸旋轉(zhuǎn)一周所形成的幾何體的表面積是( 。
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+2|+|x-1|.
(1)證明:f(x)≥f(0);
(2)若?x∈R,不等式2f(x)≥f(a+1)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:實數(shù)的平方是非負(fù)數(shù),則下列結(jié)論正確的是( 。
A.命題¬p是真命題
B.命題p是特稱命題
C.命題p是全稱命題
D.命題p既不是全稱命題也不是特稱命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)圓${F_1}:{x^2}+{y^2}+4x=0$的圓心為F1,直線l過點F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點,過F2作F1C的平行線交直線F1D于點E,
(1)證明||EF1|-|EF2||為定值,并寫出點E的軌跡方程;
(2)設(shè)點E的軌跡為曲線Γ,直線l交Γ于M,N兩點,過F2且與l垂直的直線與圓F1交于P,Q兩點,求△PQM與△PQN的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦點為F,直線x=a與橢圓相交于點M、N,當(dāng)△FMN的周長最大時,△FMN的面積是( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊答案