15.《周髀算經(jīng)》是中國古代的天文學(xué)和數(shù)學(xué)著作.其中一個問題大意為:一年有二十四個節(jié)氣,每個節(jié)氣晷長損益相同(即太陽照射物體影子的長度增加和減少大小相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長為( 。
A.五寸B.二尺五寸C.三尺五寸D.一丈二尺五寸

分析 設(shè)晷長為等差數(shù)列{an},公差為d,a1=15,a13=135,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)晷長為等差數(shù)列{an},公差為d,a1=15,a13=135,
則15+12d=135,解得d=10.
∴a2=15+10=25,
∴《易經(jīng)》中所記錄的驚蟄的晷影長是2尺5寸.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.表面積為24的正方體的頂點(diǎn)都在同一球面上,則該球的體積為(  )
A.12πB.$4\sqrt{3}π$C.$\frac{8}{3}$πD.$\frac{4\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=Asin(ωx+ϕ)$(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,則其在區(qū)間$[\frac{π}{3},2π]$上的單調(diào)遞減區(qū)間是( 。
A.$[\frac{π}{3},π]$和$[\frac{11π}{6},2π]$B.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{4π}{3},\frac{11π}{6}]$
C.$[\frac{π}{3},\frac{5π}{6}]$和$[\frac{11π}{6},2π]$D.$[\frac{π}{3},π]$和$[\frac{4π}{3},\frac{11π}{6}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,O是△ABC外接圓的圓心,若$\sqrt{2}αcosB=\sqrt{2}c-b$,且$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,則m的值是(  )
A.$\frac{{\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=$\frac{{|{ax+1}|-|{2x-1}|}}{|x|}$.
(1)當(dāng)a=2時,求不等式f(x)>1的解集;
(2)若對任意a∈(0,1),x∈{x|x≠0},不等式f(x)≤b恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=sin$\frac{1}{2}$x的圖象向左平移φ(φ>0)個單位得到函數(shù)g(x)=cos$\frac{1}{2}$x的圖象,則φ的最小值是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.AQI(Air Quality Index,空氣質(zhì)量指數(shù))是報告每日空氣質(zhì)量的參數(shù),描述了空氣清潔或者污染的程度.AQI共分六級,從一級優(yōu)(0~50),二級良(51~100,),三級輕度污染(101~150),四級重度污染(151~200),直至無極重度污染(201~300),六級嚴(yán)重污染(大于300).下面是昆明市2017年4月份隨機(jī)抽取的10天的AQI莖葉圖,利用該樣本估計(jì)昆明市2018年4月份質(zhì)量優(yōu)的天數(shù)(按這個月共30天計(jì)算)為( 。
A.3B.4C.12D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在平面直角坐標(biāo)系中,點(diǎn)F(-1,0),過直線l:x=-2右側(cè)的動點(diǎn)P作PA⊥l于點(diǎn)A,∠APF的平分線交x軸于點(diǎn)B,|PA|=$\sqrt{2}$|BF|.
(1)求動點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F的直線q交曲線C于M,N,試問:x軸正半軸上是否存在點(diǎn)E,直線EM,EN分別交直線l于R,S兩點(diǎn),使∠RFS為直角?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=2sin(2x+$\frac{2π}{3}$),若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊答案