分析 (1)根據函數單調性的定義證明函數的單調性,注意取值、作差、變形和定符號和下結論;
(2)運用函數的單調性,從而求出函數的最值.
解答 解:(1)證明:令3≤x1<x2≤5,
則f(x1)-f(x2)=1-$\frac{3}{{x}_{1}+2}$-(1-$\frac{3}{{x}_{2}+2}$)
=-3($\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$)=-3•$\frac{{x}_{2}-{x}_{1}}{({x}_{1}+2)({x}_{2}+2)}$,
∵3≤x1<x2≤5,∴x2-x1>0,(x1+2)(x2+2)>0,
∴f(x1)<f(x2),
故f(x)在[3,5]遞增;
(2)由f(x)在[3,5]遞增,
可得f(3)取得最小值1-$\frac{3}{5}$=$\frac{2}{5}$;
f(5)取得最大值1-$\frac{3}{7}$=$\frac{4}{7}$.
點評 本題考查了函數的單調性的定義,考查求函數的值域問題,是一道基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-1,0) | B. | (-1,2) | C. | (-1,2] | D. | (0,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | -8 | D. | -10 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,3) | B. | (0,3) | C. | (0,8) | D. | (-1,8) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com