【題目】已知在處的極值為0.
(1)求常數(shù)的值;
(2)求的單調(diào)區(qū)間;
(3)方程在區(qū)間上有三個(gè)不同的實(shí)根時(shí),求實(shí)數(shù)的范圍.
【答案】(1);(2)的遞減區(qū)間為, 的遞增區(qū)間為和;(3)
【解析】試題分析:(1)求出f′(x)=3x2+6ax+b,利用函數(shù)的極值點(diǎn),列出方程組求解即可.(2)求出導(dǎo)函數(shù)f′(x)=3x2+12x+9=3(x+3)(x+1),求出極值點(diǎn),列表判斷導(dǎo)函數(shù)的符號,推出函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間.(3)利用函數(shù)的極值,求解c的范圍即可.
試題解析:
(1)可得,
由題時(shí)有極值0,可得: ,即
解得: (舍去)或
(2)當(dāng)時(shí),
故方程有根或
0 | 0 | ||||
極大值 | 極小值 |
由上表可知: 的遞減區(qū)間為, 的遞增區(qū)間為和
(3)因?yàn)?/span>,
由函數(shù)的連續(xù)性以及函數(shù)的單調(diào)性可得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點(diǎn)且關(guān)于軸對稱的兩條直線與分別交曲線于、和、,且點(diǎn)在第一象限,當(dāng)四邊形的周長最大時(shí),求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系.某重點(diǎn)高中數(shù)學(xué)教師對高三年級的50名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有22人,余下的人中,在高三年級模擬考試中數(shù)學(xué)平均成績不足120分鐘的占,統(tǒng)計(jì)成績后,得到如下的列聯(lián)表:
分?jǐn)?shù)大于等于120分鐘 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
周做題時(shí)間不少于15小時(shí) | 4 | 22 | |
周做題時(shí)間不足15小時(shí) | |||
合計(jì) | 50 |
(Ⅰ)請完成上面的列聯(lián)表,并判斷能否有99%以上的把握認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)(ⅰ)按照分層抽樣,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線是函數(shù)圖象的一條對稱軸.
(1)求的值,并求的解析式;
(2)若關(guān)于的方程在區(qū)間上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的圖象是由圖象上的所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,然后再向左平移個(gè)單位得到,若, ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線及直線外一點(diǎn).
(1)寫出點(diǎn)到直線的距離公式;
(2)利用向量求證點(diǎn)到直線的距離公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)若函數(shù))在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若當(dāng)時(shí),方程有實(shí)數(shù)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)為曲線在點(diǎn)處的切線,其中.
(Ⅰ)求直線的方程(用表示);
(Ⅱ)求直線在軸上的截距的取值范圍;
(Ⅲ)設(shè)直線分別與曲線和射線()交于, 兩點(diǎn),求的最小值及此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為評估新教改對教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對比試驗(yàn),甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測試,成績結(jié)果全部落在區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖所示,兩個(gè)班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生成績優(yōu)良與班級有關(guān)?
(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.
(以下臨界值及公式僅供參考)
, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com