7.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高二(1)班n名學(xué)生視力情況進(jìn)行調(diào)查,得到如圖所的頻率分布直方圖,已知視力在4.0~4.4范圍內(nèi)的學(xué)生人數(shù)為24人,視力在5.0~5.2范圍內(nèi)為正常視力,視力在3.8~4.0范圍內(nèi)為嚴(yán)重近視.
(1)求a,n的值;
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)班級(jí)名次在前10名和后10名的學(xué)生進(jìn)行了調(diào)查,得到如表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(3)若先按照分層抽樣在正常視力和嚴(yán)重近視的學(xué)生中抽取6人進(jìn)一步調(diào)查他們用眼習(xí)慣,再?gòu)倪@6人中隨機(jī)抽取2人進(jìn)行保護(hù)視力重要性的宣傳,求視力正常人數(shù)ξ的分布列和期望.
是否近視/年級(jí)名次前10名后10名
近視97
不近視13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

分析 (1)由頻率和為1列方程求出a的值,根據(jù)頻率、頻數(shù)與樣本容量的概型求出n的值;
(2)由列聯(lián)表計(jì)算K2,對(duì)照臨界值表得出正確的結(jié)論;
(3)由題意知ξ的可能取值,計(jì)算對(duì)應(yīng)的概率值,寫(xiě)出ξ的分布列,求出數(shù)學(xué)期望值.

解答 解:(1)由頻率和為1,得
(a+2a+2a+3a+4a+4a+4a)×0.2=1,
解得a=0.25,
由已知(4a+4a)×0.2=$\frac{24}{n}$,
解得n=60;
(2)由列聯(lián)表計(jì)算K2=$\frac{20{×(9×3-1×7)}^{2}}{10×10×16×4}$=$\frac{5}{4}$=1.25<2.706,
所以在犯錯(cuò)誤的概率不超過(guò)0.10的前提下,不能認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系;
(3)正常視力為6人,嚴(yán)重近視為3人,依題意抽取的6人中,正常視力4人,嚴(yán)重近視2人,
從6人中任取2人,視力正常人數(shù)ξ的可能取值為0,1,2;
則P(ξ=0)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{•C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,
P(ξ=2)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{6}{15}$=$\frac{2}{5}$;
∴ξ的分布列為,

 ξ 0 1 2
 P 
$\frac{1}{15}$
 
$\frac{8}{15}$
 
$\frac{2}{5}$
數(shù)學(xué)期望為E(ξ)=0×$\frac{1}{15}$+1×$\frac{8}{15}$+2×$\frac{2}{5}$=$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖與獨(dú)立性檢驗(yàn)問(wèn)題,也考查了離散型隨機(jī)變量的分布列,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知cosα=-$\frac{3}{5}$,α是第三象限的角,則sinα=( 。
A.-$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等差數(shù)列{an}的公差為d,關(guān)于x的不等式 $\frace3ywpwk{2}$x2+(a1-$\frac6qsunqr{2}$)x+c≥0的解集為[0,20],則使數(shù)列{an}的前n項(xiàng)和Sn最大的正整數(shù)n的值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE,設(shè)PA=1,AD=2.
(1)求平面BPC的法向量;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=x3-$\frac{3}{2}$x2,方程f2(x)+tf(x)+1=0有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)t的取值范圍是(  )
A.(-∞,$\frac{5}{2}$)B.(-$\frac{5}{2}$,+∞)C.($\frac{5}{2}$,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,若存在實(shí)數(shù)x0∈[1,2],使f[f(x0)]=x0,則a的取值范圍是(0,3-e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖所示,用A1、A2、A3三個(gè)元件連接成一個(gè)系統(tǒng),A1、A2、A3能否正常工作相互獨(dú)立,當(dāng)A1正常工作且A2、A3至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作,已知A1、A2、A3正常工作的概率均為$\frac{2}{3}$,則系統(tǒng)正常工作的概率為( 。
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{16}{27}$D.$\frac{20}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$為奇函數(shù),且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,若$\overrightarrow m∥\overrightarrow n$,則x=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案