8.如果直線ax+by=7(a>0,b>0)和函數(shù)f(x)=1+logmx(m>0,m≠1)的圖象恒過同一個(gè)定點(diǎn),且該定點(diǎn)始終落在圓(x+b-1)2+(y+a-1)2=25的內(nèi)部或圓上,那么$\frac{a}$的取值范圍是(  )
A.$[{\frac{3}{4},\frac{4}{3}}]$B.$({0,\frac{3}{4}}]∪[{\frac{4}{3},+∞})$C.$[{\frac{4}{3},+∞})$D.$({0,\frac{3}{4}}]$

分析 由冪函數(shù)求出定點(diǎn)坐標(biāo),把定點(diǎn)坐標(biāo)代入直線和圓的方程,求出a的取值范圍,從而求出$\frac{a}$的取值范圍.

解答 解:f(x)=1+logmx恒過一個(gè)定點(diǎn)(1,1);
∴ax+by=7(a>0,b>0)過定點(diǎn)(1,1),
∴a+b=7①;
又定點(diǎn)(1,1)在圓(x+b-1)2+(y+a-1)2=25的內(nèi)部或圓上,
∴(1+b-1)2+(1+a-1)2≤25,
即a2+b2≤25②;
由①②得,3≤a≤4,
∴$\frac{1}{4}$≤$\frac{1}{a}$≤$\frac{1}{3}$,
∴$\frac{a}$=$\frac{7}{a}$-1∈[$\frac{3}{4}$,$\frac{4}{3}$],
故選A.

點(diǎn)評 本題考查了直線與圓的方程以及函數(shù)與不等式的應(yīng)用問題,是一道簡單的綜合試題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=lnx-ax,g(x)=ex-3ax,其中a為實(shí)數(shù),若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,則a的取值范圍是( 。
A.($\frac{e}{3}$,+∞)B.[$\frac{e}{3}$,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知經(jīng)過點(diǎn)P(3,m)和點(diǎn)Q(m,-2)的直線的斜率等于2,則m的值為( 。
A.$\frac{4}{3}$B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長為$4(\sqrt{2}+1)$,一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=|2x-1|的定義域和值域都是[a,b],則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,E為AC中點(diǎn),D為BC靠近C的三等分點(diǎn),記$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$.
(1)用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{AD},\overrightarrow{BE}$;
(2)求BP:PE,并用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{CP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x≥y\\ 2x-y≤1\end{array}\right.$若目標(biāo)函數(shù)為z=2x+4y,則z的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知云臺山景區(qū)對擁擠等級與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)n∈[0,100)時(shí),擁擠等級為“優(yōu)”;當(dāng)n∈[100,200)時(shí),擁擠等級為“良”;當(dāng)n∈[200,300)時(shí),擁擠等級為“擁擠”;當(dāng)n≥300時(shí),擁擠等級為“嚴(yán)重?fù)頂D”.該景區(qū)對9月份的游客數(shù)量作出如圖的統(tǒng)計(jì)數(shù)據(jù).
(1)下面是根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到的頻率分布直方表,求出a,b,c的值,并估計(jì)該景區(qū)9月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
游客數(shù)量
(單位:百人)
[0,100)[100,200)[200,300)[300,400)
天數(shù)a104c
頻率b$\frac{1}{3}$$\frac{2}{15}$$\frac{1}{30}$
(2)某人選擇在9月1日至9月5日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級均為“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知M={2,(m2-2m)+(m2+m-2)i},P={-1,2,4i},若M∪P=P,求實(shí)數(shù)m的值.
(2)已知方程x2+4x+a=0(a∈R)的一個(gè)根為x1=-2+i,求a的值和方程的另一個(gè)根.

查看答案和解析>>

同步練習(xí)冊答案