在平面直角坐標(biāo)系xOy中,M為不等式組
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的區(qū)域上一動點,則直線OM斜率的最小值為
 
考點:簡單線性規(guī)劃
專題:
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用w的幾何意義即可得到結(jié)論..
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由圖象可知當(dāng)點M位于A時,直線的斜率最小,
x+2y-1=0
3x+y-8=0
,解得
x=3
y=-1
,
即A(3,-1),
∴OM的斜率k=
-1
3
=-
1
3

故答案為:-
1
3
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點F(
2
2
)及直線l:x+y-
2
=0,曲線C1是滿足下列兩個條件的動點P(x,y)的軌跡:①|(zhì)PF|=
2
d其中d是P到直線l的距離;②
x>0
y>0
2x+2y<5

(1)求曲線C1的方程;
(2)若存在直線m與曲線C1、橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)均相切于同一點,求橢圓C2離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(1,e)和(e,
3
2
),其中e為橢圓的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點,取點A(0,
2
),E(x0,0)
,連接AE,過點A作AE的垂線交x軸于點D.點G是點D關(guān)于原點的對稱點,證明:直線QG與橢圓C只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2x4上的點到直線x+y+1=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-(m+2)x+m+5在區(qū)間(2,4)內(nèi)有且只有一個零點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
i
j
滿足(2
j
-
i
i
,則
i
,
j
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
1≤x≤2
2x-1≤y≤2x
,則
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列7個判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;②函數(shù)f(x)=2x-x2只有兩個零點;
③函數(shù)y=ln(x2+1)的值域是R;④函數(shù)y=2|x|的最小值是1;⑤在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對稱;⑥設(shè)a>1,log0.2a、0.2a、a0.2的大小關(guān)系為log0.2a<0.2aa0.2;⑦設(shè)偶函數(shù)f(x)的定義域為R,當(dāng)x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)為U=R;
其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、“a=1”是直線“l(fā)1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x>0”
C、命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0無實數(shù)根,則m≤0”
D、若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

同步練習(xí)冊答案