【題目】(文科學(xué)生做)已知數(shù)列滿足.

(1)求,,的值,猜想并證明的單調(diào)性;

(2)請用反證法證明數(shù)列中任意三項都不能構(gòu)成等差數(shù)列.

【答案】(1) 猜想該數(shù)列為單調(diào)遞減數(shù)列,證明見解析.

(2)見解析.

【解析】分析:(1)由題可直接計算,,的值,根據(jù)數(shù)值的增減性可猜想單調(diào)性;(2)反證法證明,先假設(shè)結(jié)論的反面成立,然后根據(jù)假設(shè)結(jié)合題設(shè)找出矛盾即可得原命題正確.

詳解:

(1)計算得,猜想該數(shù)列為單調(diào)遞減數(shù)列.

下面給出證明:,

因為,故,所以恒成立,即數(shù)列為單調(diào)遞減數(shù)列.

(2)假設(shè)中存在三項成等差數(shù)列,不妨設(shè)為 這三項,

由(1)證得數(shù)列為單調(diào)遞減數(shù)列,則,即,

兩邊同時乘以,則等式可以化為,(

因為,所以均為正整數(shù),故為偶數(shù),

為奇數(shù),因此等式(※)兩邊的奇偶性不同,故等式(※)不可能成立,

所以假設(shè)不成立,故數(shù)列中任意三項都不能構(gòu)成等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

(1)若,求不等式的解集;

(2)若對任意,均存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有 (n≥2,n∈N*)個給定的不同的數(shù)隨機(jī)排成一個下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設(shè)備甲每天的租賃費(fèi)為200元,設(shè)備乙每天的租賃費(fèi)為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個路燈的平面設(shè)計示意圖,其中曲線段AOB可視為拋物線的一部分,坐標(biāo)原點(diǎn)O為拋物線的頂點(diǎn),拋物線的對稱軸為y軸,燈桿BC可視為線段,其所在直線與曲線AOB所在的拋物線相切于點(diǎn)B.已知AB=2分米,直線軸,點(diǎn)C到直線AB的距離為8分米.燈桿BC部分的造價為10/分米;若頂點(diǎn)O到直線AB的距離為t分米,則曲線段AOB部分的造價為. 設(shè)直線BC的傾斜角為以上兩部分的總造價為S.

(1)①求t關(guān)于的函數(shù)關(guān)系式;

②求S關(guān)于的函數(shù)關(guān)系式;

(2)求總造價S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是長軸長為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個動點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,是數(shù)列的前項的和.

(1)求數(shù)列的通項公式;

(2)若,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;

(3)是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷某商品,顧客可以采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是,經(jīng)銷件該產(chǎn)品,若顧客采用一次性付款,商場獲得利潤元;若顧客采用分期付款,商場獲得利潤元.

(Ⅰ)求位購買商品的顧客中至少有位采用一次性付款的概率.

(Ⅱ)若位顧客每人購買件該商品求商場獲得利潤不超過元的概率.

(Ⅲ)若位顧客每人購買件該商品,設(shè)商場獲得的利潤為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案