3.下表是某廠改造后產(chǎn)量x噸產(chǎn)品與相應(yīng)生產(chǎn)能耗y(噸)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)已知技術(shù)改造前生產(chǎn)100噸該產(chǎn)品能耗90噸,試根據(jù)所求出的回歸方程,預(yù)測生產(chǎn)100噸該產(chǎn)品的生產(chǎn)能耗比改造前降低多少噸?
附:$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個(gè)數(shù)據(jù),代入求系數(shù)$\widehat$的公式,求得結(jié)果,再把樣本中心點(diǎn)代入,求出$\widehat{a}$的值,得到線性回歸方程.
(2)根據(jù)上一問所求的線性回歸方程,把x=100代入線性回歸方程,即可估計(jì)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗.

解答 解:(1)$\overline{x}$=$\frac{1}{4}$(3+4+5+6)=4.5,
$\overline{y}$═$\frac{1}{4}$(2.5+3+4+4.4)=3.5,
故$\widehat$=$\frac{\sum_{i=1}^{4}{{(x}_{i}y}_{i}-4\overline{x}•\overline{y})}{{{\sum_{i=1}^{4}x}_{i}}^{2}-{4\overline{x}}^{2}}$=0.7,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$=0.35,
故$\widehat{y}$=0.7x+0.35…(8分)
(2)將x=100代入方程得:$\widehat{y}$=70.35,
生產(chǎn)100噸耗能70.35噸,降低90-70.35=19.65噸              …(12分)

點(diǎn)評 本題考查線性回歸方程,兩個(gè)變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個(gè)變量之間整體關(guān)系的了解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,H為四棱錐P-ABCD的棱PC的三等分點(diǎn),且PH=$\frac{1}{2}$HC,點(diǎn)G在AH上,AG=mAH.四邊形ABCD為平行四邊形,若G,B,P,D四點(diǎn)共面,則實(shí)數(shù)m等于(  )
A.$\frac{1}{4}$B.$\frac{4}{3}$P,DC.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$是單位向量,若$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=2,$\overrightarrow$•($\overrightarrow{a}$+$\overrightarrow$)=4,則|$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}={(-1)^n}{a_n}+\frac{1}{2^n}$,設(shè){Sn}的前n項(xiàng)和為Tn,T2017=$\frac{1}{3}[1-(\frac{1}{2})^{2016}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)由數(shù)字1、2、3、4、5、6、7組成無重復(fù)數(shù)字的七位數(shù),求三個(gè)偶數(shù)必相鄰的七位數(shù)的個(gè)數(shù)及三個(gè)偶數(shù)互不相鄰的七位數(shù)的個(gè)數(shù);
(2)六本不同的書,分為三組,求在下列條件下各有多少種不同的分配方法?
①每組兩本;
②一組一本,一組二本,一組三本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若${a_n}=\frac{1}{(n+1)(n+2)}$,則S8=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g_{\frac{1}{2}}}x,0<x≤1}\\{-{x^2}+4x-3,x>1}\end{array}$,函數(shù)g(x)=f(x)-kx有兩個(gè)零點(diǎn),則k的值是( 。
A.0或$4-2\sqrt{3}$B.$4+2\sqrt{3}$C.0D.$4±2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足$\frac{1-i}{i}$•z=1,則|z|=( 。
A.1B.5C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知四棱錐P-ABCD,底面ABCD為矩形,點(diǎn)E,F(xiàn)在側(cè)棱PA,PB上且PE=2EA,PF=2FB,點(diǎn)M為四棱錐內(nèi)任一點(diǎn),則M在平面EFCD上方的概率是(  )
A.$\frac{3}{8}$B.$\frac{5}{9}$C.$\frac{7}{10}$D.$\frac{5}{8}$

查看答案和解析>>

同步練習(xí)冊答案