14.復數(shù)$\frac{2i}{1-i}+2$的虛部是( 。
A.-1B.1C.-iD.i

分析 利用復數(shù)的運算法則、共軛復數(shù)與虛部的定義即可得出.

解答 解:復數(shù)$\frac{2i}{1-i}+2$=$\frac{2i(1+i)}{(1-i)(1+i)}$+2=$\frac{-2+2i}{2}$+2=1+i的虛部為1.
故選:B.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義、虛部的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點,Q是橢圓上任一點,過一焦點引∠F1QF2的外角平分線的垂線,則垂足M的軌跡為(  )
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線2x+y-2=0與直線4x+my+6=0平行,則它們之間的距離為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=ln(1-5x)的定義域是(  )
A.(-∞,0)B.(0,1)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.計算:
(1)已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,求a+a-1;
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)的定義域為R+,且對任意的正實數(shù)x,y都有f(x+y)=f(x)+f(y),若f(8)=3,則$f(\frac{5}{2})$=$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知偶函數(shù)f(x)在(0,+∞)上遞減,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,則f(a),f(b),f(c)  大小為( 。
A.f(a)>f(b)>f(c)B.f(a)>f(c)>f(b)C.f(b)>f(a)>f(c)D.f(c)>f(a)>f(b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知Sn是數(shù)列{an}的前n項和,且滿足Sn-2an=n-4.
(1)證明{Sn-n+2}為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)若圓N:x2+y2=r2的斜率為k的切線l與橢圓M相交于P、Q兩點,OP與OQ能否垂直?若能垂直,請求出相應的r的值,若不能垂直,請說明理由.

查看答案和解析>>

同步練習冊答案