已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,
當(dāng)x變化時(shí),f’(x)與f(x)的變化情況如下表:
x |
(-∞,-m) |
-m |
(-m,) |
(,+∞) |
|
f’(x) |
+ |
0 |
- |
0 |
+ |
f (x) |
|
極大值 |
|
極小值 |
|
從而可知,當(dāng)x=-m時(shí),函數(shù)f(x)取得極大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切線方程為y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省南靖一中高二文科上學(xué)期期末考試試卷 題型:解答題
已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為-5的直線是曲線的切線,求此直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省畢業(yè)班階段測(cè)試一文數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)(m為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導(dǎo)數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點(diǎn)坐標(biāo)和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省成都市高三第二次診斷性檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)(m為常數(shù)),對(duì)任意的 恒成立.有下列說(shuō)法:
①m=3;
②若(b為常數(shù))的圖象關(guān)于直線x=1對(duì)稱(chēng),則b=1;
③已知定義在R上的函數(shù)F(x)對(duì)任意x均有成立,且當(dāng)時(shí),;又函數(shù)(c為常數(shù)),若存在使得成立,則c的取值范圍是(一1,13).
其中說(shuō)法正確的個(gè)數(shù)是
(A)3 個(gè) (B)2 個(gè) (C)1 個(gè) (D)O 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州外國(guó)語(yǔ)學(xué)校高二下學(xué)期期中考試數(shù)學(xué)卷(理) 題型:解答題
(本小題12分)已知函數(shù)(m為常數(shù),m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷八文科數(shù)學(xué) 題型:解答題
(本小題滿分12分) 已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為的直線是曲線的切線,求此直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com