已知函數(shù)f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1為f(x)的極值點(diǎn),求a的值.
(2)若y=f(x)的圖象在(1,f(1))處的切線方程為x+y-3=0,求f(x)在區(qū)間[-2,4]上的最大值.
(1)求導(dǎo)函數(shù)可得f′(x)=x2-2ax+a2-1
∵x=1是f(x)的極值點(diǎn),∴f′(1)=0,∴a2-2a=0,∴a=0或2
(2)∵(1,f(1))在x+y-3=0上,∴f(1)=2
∵(1,2)在y=f(x)的圖象上,∴2=
1
3
-a+a2-1+b
又∵f′(1)=-1,∴1-2a+a2-1=-1,∴a2-2a+1=0
∴a=1,b=
8
3

f(x)=
1
3
x3-x2+
8
3

∴f′(x)=x2-2x
∴由f′(x)=0,可知x=0和x=2是f(x)的極值點(diǎn)
f(0)=
8
3
,f(2)=
4
3
,f(-2)=-4,f(4)=8
∴f(x)在區(qū)間[-2,4]上的最大值為8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-2x.
(Ⅰ)指出函數(shù)f(x)值域和單調(diào)減區(qū)間;
(Ⅱ)求函數(shù)f(x)在(0,0)點(diǎn)處的切線方程;
(Ⅲ)求f(x-1)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線y=log2x在點(diǎn)(1,0)處的切線與坐標(biāo)軸所圍三角形的面積等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax+blnx.
(1)當(dāng)x=2時(shí)f(x)取得極小值2-2ln2,求a,b的值;
(2)當(dāng)b=-1時(shí),若在區(qū)間(0,e]上至少存在一點(diǎn)x0,使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義在區(qū)間[-2,t](t>-2)上的函數(shù)f(x)=(x2-3x+3)ex
(Ⅰ)當(dāng)t>1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m=f(-2),n=f(t).試證明:m<n;
(Ⅲ)設(shè)g(x)=f(x)+(x-2)ex,當(dāng)x>1時(shí)試判斷方程g(x)=x根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t).記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若x∈[0,+∞),則下列不等式恒成立的是( 。
A.ex≤1+x+x2B.
1
1+x
≤1-
1
2
x+
1
4
x2
C.cosx≥1-
1
2
x2
D.ln(1+x)≥x-
1
8
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1處取得極值.
(1)求b的值;
(2)若當(dāng)x∈[1,2]時(shí),f(x)<c2恒成立,求c的取值范圍;
(3)c為何值時(shí),曲線y=f(x)與x軸僅有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車(chē)生產(chǎn)企業(yè)上年度生產(chǎn)一品牌汽車(chē)的投入成本為10萬(wàn)元/輛,出廠價(jià)為13萬(wàn)元/輛,年銷(xiāo)售量為5000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車(chē)投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)提高的比例為0.7x,年銷(xiāo)售量也相應(yīng)增加.已知年利潤(rùn)=(每輛車(chē)的出廠價(jià)-每輛車(chē)的投入成本)×年銷(xiāo)售量.
(Ⅰ)若年銷(xiāo)售量增加的比例為0.4x,為使本年度的年利潤(rùn)比上年度有所增加,則投入成本增加
的比例x應(yīng)在什么范圍內(nèi)?
(Ⅱ)年銷(xiāo)售量關(guān)于x的函數(shù)為y=3240(-x2+2x+
5
3
)
,則當(dāng)x為何值時(shí),本年度的年利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案