【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個點(diǎn);

④若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng).

以上正確說法的個數(shù)是( )

A. B. C. D.

【答案】B

【解析】

由題意,對各個命題逐一判斷,可得真假。

①殘差平方和越小的模型,模擬效果越好,故①對;

②用相關(guān)指數(shù)來刻畫回歸效果,越大說明模擬效果越好,故②錯

③回歸直線必過樣本中心,但數(shù)據(jù)點(diǎn)不一定在線上,故③錯

④相關(guān)系數(shù)為正值,則兩變量正相關(guān),相關(guān)系數(shù)為負(fù)值,則兩變量負(fù)相關(guān),且相關(guān)系數(shù)絕對值越接近1,相關(guān)性越強(qiáng),,則負(fù)相關(guān)很強(qiáng),故④對,故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義域為的函數(shù)的導(dǎo)函數(shù),,,則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦點(diǎn)為(,0)(,0),且橢圓C過點(diǎn)M(4,1),直線l不過點(diǎn)M,且與橢圓交于不同的兩點(diǎn)A,B.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)求證:直線MA,MB與x軸總圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)F與拋物線焦點(diǎn)重合,且橢圓的離心率為,過軸正半軸一點(diǎn) 且斜率為的直線交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實數(shù)使以線段為直徑的圓經(jīng)過點(diǎn),若存在,求出實數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

)判斷函數(shù)的單調(diào)性,并說明理由;

)若,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200.在機(jī)器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元), 表示購機(jī)的同時購買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對任意的,總存在,使得,則實數(shù)的取值范圍是( )

A. B. C. D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(元)表示為長度的函數(shù);

(2)當(dāng)取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一某班50名學(xué)生參加防疫知識競賽,將所有成績制作成頻率分布表如下:

分組

頻數(shù)

頻率

0.06

35

0.070

6

0.12

4

1)求頻率分布表中的值;

2)從成績在的學(xué)生中選出2人,請寫出所有不同的選法,并求選出2人的成績都在中的概率.

查看答案和解析>>

同步練習(xí)冊答案