20.設(shè)復(fù)數(shù)$z=\frac{2i}{cos120°+isin120°}$,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.2

分析 根據(jù)復(fù)數(shù)的運(yùn)算求出z,從而求出z的模即可.

解答 解:$z=\frac{2i}{cos120°+isin120°}$
=$\frac{2i(cos120°-isin120°)}{(cos120°+isin120°)(cos120°-isin120°)}$
=2sin120°+2cos120°i
=$\sqrt{3}$-i,
則|z|=$\sqrt{3+1}$=2,
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)求模問題,考查三角函數(shù)以及復(fù)數(shù)的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.有3臺(tái)設(shè)備,每臺(tái)正常工作的概率均為0.9,則至少有2臺(tái)能正常工作的概率為0.972.(用小數(shù)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=|2x+2|+|2x-3|.
(1)求不等式f(x)>7 的解集;
(2)若關(guān)于x的不等式f(x)≤|3m-2|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.y=2sin($\frac{π}{6}x+\frac{π}{3}$)-$\frac{2}{9}x$+$\frac{8}{9}$在x∈R上有零點(diǎn),記作x1,x2,…xn,求x1+x2+…+xn=(  )
A.16B.12C.20D.-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b∈R,i2=-1,則“a=b=1”是“(a+bi)2=2i”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx的圖象與函數(shù)g(x)=3sin2x-λ(λ∈R)的圖象在$[{-\frac{π}{4},\frac{π}{2}}]$上有兩個(gè)交點(diǎn),則實(shí)數(shù)λ的取值范圍是(  )
A.$(\frac{{3-2\sqrt{3}}}{2},0]$B.$(\frac{{3-2\sqrt{3}}}{2},3]$C.$(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$D.$(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=sinx的圖象向左平移φ(0≤φ≤2π)個(gè)單位后,得到函數(shù)$y=sin({x+\frac{π}{6}})$的圖象,則φ等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列圖象中,能夠作為函數(shù)y=f(x)的圖象的有( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要安排某人下月1-10號(hào)這十天值班七天,其中連續(xù)值班不能超過3天,則所有不同的值班安排方法有( 。┓N.
A.16B.28C.40D.56

查看答案和解析>>

同步練習(xí)冊(cè)答案