分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得2cos2A-3cosA-2=0.解得cosA=-$\frac{1}{2}$,即可得解A的值.
(2)由已知利用余弦定理可求BD,cos∠ADB=$\frac{\sqrt{2}}{2}$,進而可求∠ADB=$\frac{π}{4}$,由S四邊形ABCD=S△ABD+S△BCD利用三角形面積公式即可計算得解.
解答 解:(1)∵∠ABD=α,∠ADB=β,α+β=π-A,
∴由3cosαcosβ-3sinαsinβ=2-2cos2A.
可得:3cos(α+β)=2-2cos2A.可得:-3cosA=2-2cos2A.
∴2cos2A-3cosA-2=0.解得:cosA=-$\frac{1}{2}$或2(舍去),
∴A=$\frac{2π}{3}$.
(2)∵AD=$\sqrt{3}$-1,AB=2,A=$\frac{2π}{3}$,
∴△ABD中,由余弦定理可得:BD=$\sqrt{A{B}^{2}+A{D}^{2}-2AB•AD•cosA}$=$\sqrt{4+(\sqrt{3}-1)^{2}-2×2×(\sqrt{3}-1)×(-\frac{1}{2})}$=$\sqrt{6}$,
∴cos∠ADB=$\frac{A{D}^{2}+B{D}^{2}-A{B}^{2}}{2AD•BD}$=$\frac{\sqrt{2}}{2}$,可得∠ADB=$\frac{π}{4}$,
∴S四邊形ABCD=S△ABD+S△BCD
=$\frac{1}{2}$AB•AD•sinA+$\frac{1}{2}BD•CD•sin∠BDC$
=$\frac{1}{2}×2×$($\sqrt{3}-1$)×$\frac{\sqrt{3}}{2}$+$\frac{1}{2}×\sqrt{6}×\sqrt{2}×$sin($\frac{3π}{4}$-$\frac{π}{4}$)
=$\frac{3+\sqrt{3}}{2}$.
點評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,考查了數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-2 | B. | $-\frac{2}{3}$ | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com