【題目】設(shè)命題p:不等式x﹣x2≤a對x≥1恒成立,命題q:關(guān)于x的方程x2﹣ax+1=0在R上有解.
(1)若p為假命題,求實數(shù)a的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.
【答案】
(1)解:∵¬p為假命題,
∴命題p為真命題;
∵x﹣x2在x∈[1,+∞)單調(diào)遞減,
∴x﹣x2的最大值為0,
故a≥0
(2)解:命題q:△=a2﹣4≥0,
∴a≥2或a≤﹣2,
“p∧q”為假命題,“p∨q”為真命題,等價于p真q假,或者p假q真,
則 或 ,
∴實數(shù)a的取值范圍為a≤﹣2或0≤a<2
【解析】(1)若p為假命題,則p為真命題,進(jìn)而可得實數(shù)a的取值范圍;(2)若“p∧q”為假命題,“p∨q”為真命題,則p真q假,或者p假q真,進(jìn)而可得實數(shù)a的取值范圍;
【考點精析】利用命題的真假判斷與應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)若函數(shù)在上單調(diào),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在邊長為24的正方形中,點在邊上,且, ,作分別交、于點,作分別交于點,將該正方形沿折疊,使得與重合,構(gòu)成如圖2所示的三棱柱.
(1)求證: 平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的內(nèi)角,tanA,tanB是關(guān)于方程x2+ px﹣p+1=0(p∈R)兩個實根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)求函數(shù)f(x)的最小正周期和最大值,并求出x為何值時,f(x)取得最大值;
(2)求函數(shù)f(x)在[﹣2π,2π]上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 =1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為﹣ ,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大風(fēng)車的半徑為2m,每6s旋轉(zhuǎn)一周,它的最低點O離地面0.5 m.風(fēng)車圓周上一點A從最低點O開始,運(yùn)動t(s)后與地面的距離為h(m),則函數(shù)h=f(t)的關(guān)系式( )
A.y=﹣2cos+2.5
B.y=﹣2sin+2.5
C.y=﹣2cos+2.5
D.y=﹣2sin+2.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠,分別位于矩形ABCD的兩個頂點A、B及CD的中點P處,AB=30km,BC=15km,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與A、B等距離的一點O處,建造一個污水處理廠,并鋪設(shè)三條排污管道AO、BO、PO.設(shè)∠BAO=x(弧度),排污管道的總長度為ykm.
(1)將y表示為x的函數(shù);
(2)試確定O點的位置,使鋪設(shè)的排污管道的總長度最短,并求總長度的最短公里數(shù)(精確到0.01km).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a , PA=PC= a ,
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com