9.已知函數(shù)$f(x)=sin(ωx+\frac{π}{6})$(其中ω>0)圖象的一條對稱軸方程為x=$\frac{π}{12}$,則ω的最小值為( 。
A.2B.4C.10D.16

分析 由題意利用正弦函數(shù)的圖象的對稱性可得ω•$\frac{π}{12}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,由此求得ω的最小值.

解答 解:根據(jù)函數(shù)$f(x)=sin(ωx+\frac{π}{6})$(其中ω>0)圖象的一條對稱軸方程為x=$\frac{π}{12}$,
可得ω•$\frac{π}{12}$+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,即ω=12k+4,故ω的最小值為4,
故選:B.

點評 本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.命題“?x0<0,(x0-1)(x0+2)≥0”的否定是( 。
A.?x0>0,(x0-1)(x0+2)<0B.?x0<0,(x0-1)(x0+2)<0
C.?x>0,(x-1)(x+2)≥0D.?x<0,(x-1)(x+2)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,c=2$\sqrt{3}$,且asinA-csinC=(a-b)sinB.
(Ⅰ)求角C的值;
(Ⅱ)若c+bcosA=a(4cosA+cosB),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失。M分100分).
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
 晉級成功晉級失敗合計
16  
  50
合計   
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調查,對手機進行打分,打分的頻數(shù)分布表如下:

女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大小(不計算具體值,給出結論即可);
(Ⅱ)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設命題p:函數(shù)f(x)=lg(ax2-2x+1)的定義域為R;命題q:當$x∈[\frac{1}{2},\;2]$時,$x+\frac{1}{x}>a$恒成立,如果命題“p∧q”為真命題,則實數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中正視圖是半徑為1的半圓,則該幾何體的表面積是(  )
A.$\frac{{(\sqrt{5}-1)π}}{2}+2$B.$\frac{{(\sqrt{5}+1)π}}{2}+2$C.$\frac{π}{2}+3$D.$\frac{{\sqrt{5}}}{2}π+2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設雙曲線Γ的方程為x2-$\frac{{y}^{2}}{3}$=1,過其右焦點F且斜率不為零的直線l1與雙曲線交于A、B兩點,直線l2的方程為x=t,A、B在直線l2上的射影分別為C、D.
(1)當l1垂直于x軸,t=-2時,求四邊形ABDC的面積;
(2)當t=0,l1的斜率為正實數(shù),A在第一象限,B在第四象限時,試比較$\frac{|AC|•|FB|}{|BD|•|FA|}$和1的大小,并說明理由;
(3)是否存在實數(shù)t∈(-1,1),使得對滿足題意的任意直線l1,直線AD和直線BC的交點總在x軸上,若存在,求出所有的t的值和此時直線AD與BC交點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左右焦點分別為F1,F(xiàn)2
(1)若雙曲線右支上一點A使得△AF1F2的面積為$\sqrt{26}$,求點A的坐標;
(2)已知O為坐標原點,圓D:(x-3)2+y2=r2(r>0)與雙曲線C右支交于M,N兩點,點P為雙曲線C上異于M,N的一動點,若直線PM,PN與x軸分別交于點R,S,求證:|OR|•|OS|為常數(shù).

查看答案和解析>>

同步練習冊答案