【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1)當時,求函數(shù)的極值;

2)若,求證:.

【答案】1)當時,極大值,當時,極小值;(2)證明見解析.

【解析】

1)首先求出導函數(shù),將代入,求出的正負,從而確定函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可求解.

2)由(1)知,當,時,可得,即,構(gòu)造,利用導數(shù)可得函數(shù)上單調(diào)遞增,即,證出,進而證出不等式.

1)因為,

所以當時,,

因為當時,;

時,;

時,;

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

所以當時,函數(shù)有極大值,

時,函數(shù)有極小值.

2)由(1)知,當,時,

函數(shù)時取得極小值,即最小值,

所以,化簡可得,

,則,

所以函數(shù)上單調(diào)遞增,

所以,所以,

從而可得,

因為不等式的兩個等號不同時成立,所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】線段AB為圓的一條直徑,其端點AB在拋物線 上,且AB兩點到拋物線C焦點的距離之和為11.

1)求拋物線C的方程及直徑AB所在的直線方程;

2)過M點的直線l交拋物線CP,Q兩點,拋物線CP,Q處的切線相交于N點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在五面體中, , , ,平面平面..

(1)證明:直線平面;

(2)已知為棱上的點,試確定點位置,使二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為正方形,四邊形為矩形,且平面與平面互相垂直.若多面體 的體積為,則該多面體外接球表面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為.(為參數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系,點的極坐標為,直線的極坐標方程為.

1)求的直角坐標和 l的直角坐標方程;

2)把曲線上各點的橫坐標伸長為原來的倍,縱坐標伸長為原來的倍,得到曲線,上動點,求中點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水資源與永恒發(fā)展2015年聯(lián)合國世界水資源日主題,近年來,某企業(yè)每年需要向自來水廠所繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設備,安裝這種凈水設備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費C(單位:萬元)與安裝的這種凈水設備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)= (x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設備的費用與該企業(yè)4年共將消耗的水費之和.

(1)試解釋C(0)的實際意義,并建立y關(guān)于x的函數(shù)關(guān)系式并化簡;

(2)x為多少平方米時,y取得最小值,最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),直線的普通方程為,設的交點為,當變化時,記點的軌跡為曲線. 在以原點為極點,軸正半軸為極軸的極坐標系中,直線的方程為.

1)求曲線的普通方程;

2)設點上,點上,若直線的夾角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,圓.

1)當為何值時,直線平行;

2)當直線與圓相交于,兩點,且時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率是,且經(jīng)過點.

1)求橢圓C的標準方程;

2)過右焦點F的直線l與橢圓C相交于A,B兩點,點B關(guān)于x軸的對稱點為H,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案