分析 求出導(dǎo)函數(shù),令導(dǎo)函數(shù)小于等于0在(0,2)內(nèi)恒成立,分離出參數(shù)a,求出函數(shù)的范圍,得到a的范圍.
解答 解:∵函數(shù)f(x)=x3-ax2+1在(0,1)內(nèi)單調(diào)遞減,
∴f′(x)=3x2-2ax≤0在(0,1)內(nèi)恒成立,
即 a≥$\frac{3}{2}$x在(0,1)內(nèi)恒成立,
∵$\frac{3}{2}$x<$\frac{3}{2}$,
∴a≥$\frac{3}{2}$,
故答案為:[$\frac{3}{2}$,+∞).
點(diǎn)評(píng) 解決函數(shù)在區(qū)間上的單調(diào)性已知求參數(shù)的范圍的問題,遞增時(shí)令導(dǎo)函數(shù)大于等于0恒成立;遞減時(shí),令導(dǎo)數(shù)小于等于0恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{(n+1)^{2}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{n}^{2}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$ωx+\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | |||||
f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ③ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com