9.積分$\int_1^e{(\frac{1}{x}+2x)dx}$的值為( 。
A.1B.eC.e+1D.e2

分析 找出被積函數(shù)的原函數(shù),計(jì)算定積分.

解答 解:原式=$(lnx+{x}^{2}){|}_{1}^{e}$=lne-ln1+e2-1=e2
故選D.

點(diǎn)評 本題考查了定積分的計(jì)算;關(guān)鍵是正確找出原函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.拋物線x2=ay上有一點(diǎn)A(x0,2),它到焦點(diǎn)的距離是3,則其標(biāo)準(zhǔn)方程是(  )
A.x2=yB.x2=2yC.x2=3yD.x2=4y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$上一點(diǎn)$M(\sqrt{3}$,$\sqrt{2})$作直線MA、MB交橢圓于A、B兩點(diǎn),若MA與MB的斜率互為相反數(shù),則直線AB的斜率為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,中心均為原點(diǎn)O的橢圓與雙曲線有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長軸四等分,則橢圓與雙曲線的離心率的比值是為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知在數(shù)列{an}中,Sn為其前n項(xiàng)和,若an>0,且4Sn=an2+2an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,公比q>1,b1=a1,且2b2,b4,3b3成等差數(shù)列.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)令cn=$\frac{{a}_{n}}{_{n}}$,若{cn}的前項(xiàng)和為Tn,求證:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差xi與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)yi(i=1,2,…,5),作了初步處理,得到下表:
日期3月1日3月2日3月3日3月4日3月5日
溫差xi0C)101113129
發(fā)芽率yi(顆)2325302616
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于26”的概率;
(2)請根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的斜率和截距最小二乘法估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x,$\sum_{i=1}^5{{x_i}{y_i}=1351}$,$\sum_{i=1}^5{x_i^2}$=615.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一袋中裝有5個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè),取出后記下顏色,若為紅色停止,若為白色則繼續(xù)抽取,停止時(shí)袋中抽取的白球的個(gè)數(shù)為隨機(jī)變量ξ,則$P(ξ≤\sqrt{6})$=( 。
A.$\frac{9}{14}$B.$\frac{25}{56}$C.$\frac{37}{56}$D.$\frac{23}{28}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.給出以下四個(gè)命題:
(1)在△ABC中,“A<B”是“sinA<sinB”的必要而非充分條件;
(2)函數(shù)f(x)=|sinx-cosx|的最小正周期是π;
(3)在△ABC中,若$AB=2\sqrt{2}$,$AC=2\sqrt{3}$,$B=\frac{π}{3}$,則△ABC為鈍角三角形;
(4)在同一坐標(biāo)系中,函數(shù)y=sinx與函數(shù)$y=\frac{x}{2}$的圖象有三個(gè)交點(diǎn)
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=3x2+1,g(x)=x3-9x.若函數(shù)f(x)+g(x)在區(qū)間[k,3]上的最大值為28,則k的取值范圍為(-∞,3).

查看答案和解析>>

同步練習(xí)冊答案