分析 (1)由4Sn=an2+2an+1(n∈N*),n=1時(shí),4a1=${a}_{1}^{2}$+2a1+1,解得a1=1.
n≥2時(shí),4Sn-1=${a}_{n-1}^{2}$+2an-1+1,相減可得:(an+an-1)(an-an-1-2)=0,又an>0,可得an-an-1-2=0,利用等差數(shù)列的通項(xiàng)公式可得an.b1=a1=1,2b2,b4,3b3成等差數(shù)列.可得$2_{2}{q}^{2}$=2b2+3b2q,化為:2q2-3q-2=0,q>1,解得q
(2)cn=$\frac{{a}_{n}}{_{n}}$=$\frac{2n-1}{{2}^{n-1}}$.利用錯(cuò)位相減法、等比數(shù)列的求和公式即可得出.
解答 解:(1)由4Sn=an2+2an+1(n∈N*),n=1時(shí),4a1=${a}_{1}^{2}$+2a1+1,解得a1=1.
n≥2時(shí),4Sn-1=${a}_{n-1}^{2}$+2an-1+1,相減可得:4an=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,化為:(an+an-1)(an-an-1-2)=0,
又an>0,∴an-an-1-2=0,即an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,公差為2.
∴an=1+2(n-1)=2n-1.
b1=a1=1,∵2b2,b4,3b3成等差數(shù)列.
∴2b4=2b2+3b3.∴$2_{2}{q}^{2}$=2b2+3b2q,化為:2q2-3q-2=0,q>1,解得q=2.
∴bn=2n-1.
(2)證明:cn=$\frac{{a}_{n}}{_{n}}$=$\frac{2n-1}{{2}^{n-1}}$.
{cn}的前項(xiàng)和為Tn=1+$\frac{3}{2}+\frac{5}{{2}^{2}}$+…+$\frac{2n-1}{{2}^{n-1}}$,
$\frac{1}{2}$Tn=$\frac{1}{2}+\frac{3}{{2}^{2}}$+…+$\frac{2n-3}{{2}^{n-1}}$+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}$Tn=1+2$(\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})$-$\frac{2n-1}{{2}^{n}}$=1+2×$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n}}$,
∴Tn=6-$\frac{2n+3}{{2}^{n-1}}$<6.
點(diǎn)評(píng) 本題考查了錯(cuò)位相減法、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 43 | B. | 44 | C. | 45 | D. | 46 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{7\sqrt{3}}{6}$ | C. | $\frac{\sqrt{21}}{3}$ | D. | $\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com