14.若loga3b=-1,則a+b的最小值為$\frac{2\sqrt{3}}{3}$.

分析 把對數(shù)式化為指數(shù)式,再利用基本不等式的性質即可得出.

解答 解:∵loga3b=-1,∴a-1=3b,解得ab=$\frac{1}{3}$.a,b>0.
則a+b≥2$\sqrt{ab}$=$\frac{2\sqrt{3}}{3}$,當且僅當a=b=$\frac{\sqrt{3}}{3}$時取等號,其最小值為$\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點評 本題考查了對數(shù)式化為指數(shù)式、基本不等式的性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,在圓心角為直角的扇形OAB中,分別以OA,OB為直徑作兩個半圓,設OA=1,則陰影部分的面積是$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列比較大小錯誤的是( 。
A.sin($-\frac{π}{18}$)>sin($-\frac{π}{10}$)B.sin250°>sin260°C.tan$\frac{π}{4}$>tan$\frac{π}{6}$D.tan138°>tan143°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知關于x的方程${log_2}({x+3})-{log_4}{x^2}=a$的解在區(qū)間(3,8)內,則a的取值范圍是$(lo{g}_{2}\frac{11}{8},1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|x-1|≤2},集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$
(1)若a=1,求集合A∩B;
(2)若A∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知$0<β<\frac{π}{2}<α<π$,且$cos({α-\frac{β}{2}})=\frac{5}{13}$,$sin({\frac{α}{2}-β})=\frac{3}{5}$.
求(1)$tan({α-\frac{β}{2}})$的值;
(2)$cos({\frac{α+β}{2}})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于定義在區(qū)間D上的函數(shù)y=f(x),若存在x0∈D,對任意的x∈D,都有f(x)≥f(x0),則稱函數(shù)f(x)在區(qū)間D上有“下界”,把f(x0)稱為函數(shù)f(x)在D上的“下界”.
(1)分別判斷下列函數(shù)是否有“下界”?如果有,寫出“下界”,否則請說明理由;f1(x)=1-2x(x>0),f2(x)=x+$\frac{16}{x}$(0<x≤5).
(2)請你類比函數(shù)有“下界”的定義,寫出函數(shù)f(x)在區(qū)間D上有“上界”的定義;并判斷函數(shù)f2(x)=|x-$\frac{16}{x}$|(0<x≤5)是否有“上界”?說明理由;
(3)若函數(shù)f(x)在區(qū)間D上既有“上界”又有“下界”,則稱函數(shù)f(x)是區(qū)間D上的“有界函數(shù)”,把“上界”減去“下界”的差稱為函數(shù)f(x)在D上的“幅度M”.
對于實數(shù)a,試探究函數(shù)F(x)=x|x-2a|+3(a≤$\frac{1}{2}$)是否是[1,2]上的“有界函數(shù)”?如果是,求出“幅度M”的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知x∈R且x≠1,比較兩式1+x與$\frac{1}{1-x}$的值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.點M的極坐標(1,π)化成直角坐標為( 。
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

同步練習冊答案