分析 根據(jù)函數(shù)f(x)的一個零點是x=$\frac{π}{3}$,得出f($\frac{π}{3}$)=0,再根據(jù)直線x=-$\frac{π}{6}$是函數(shù)f(x)圖象的一條對稱軸,得出-$\frac{π}{6}$ω-φ=$\frac{π}{2}$+kπ,k∈Z;由此求出ω的最小值與對應(yīng)φ的值,寫出f(x),再根據(jù)正弦函數(shù)的圖象與性質(zhì)進行判斷.
解答 解:函數(shù)f(x)=2sin(ωx-φ)-1的一個零點是x=$\frac{π}{3}$,
∴f($\frac{π}{3}$)=2sin($\frac{π}{3}$ω-φ)-1=0,
∴sin($\frac{π}{3}$ω-φ)=$\frac{1}{2}$,
∴$\frac{π}{3}$ω-φ=$\frac{π}{6}$+2kπ或$\frac{π}{3}$ω-φ=$\frac{5π}{6}$+2kπ,k∈Z;
又直線x=-$\frac{π}{6}$是函數(shù)f(x)圖象的一條對稱軸,
∴-$\frac{π}{6}$ω-φ=$\frac{π}{2}$+kπ,k∈Z;
又ω>0,|φ|<π,
∴ω的最小值是$\frac{2}{3}$,φ=-$\frac{11π}{18}$,
∴f(x)=2sin($\frac{2}{3}$x+$\frac{11π}{18}$)-1;
當x∈[-$\frac{4π}{3}$,-$\frac{π}{6}$]時,$\frac{2}{3}$x+$\frac{11π}{18}$∈[-$\frac{5π}{18}$,$\frac{π}{2}$],
∴f(x)在[-$\frac{4π}{3}$,-$\frac{π}{6}$]上單調(diào)遞增,故①正確;
當x∈[-$\frac{5π}{6}$,$\frac{5π}{3}$]時,$\frac{2}{3}$x+$\frac{11π}{18}$∈[$\frac{π}{18}$,$\frac{31π}{18}$],
∴f(x)在[-$\frac{5π}{6}$,$\frac{5π}{3}$]上不單調(diào),故②錯誤;
當x=$\frac{7π}{12}$時,sin($\frac{2}{3}$x+$\frac{11π}{18}$)=sinπ=0,故③正確;
當$x=\frac{-4π}{3}$時,sin($\frac{2}{3}$x+$\frac{11π}{18}$)=sin(-$\frac{5π}{18}$)≠±1,故④錯誤.y
故答案為:①③.
點評 本題考查了y=Asin(ωx+φ)的圖象與性質(zhì),正弦函數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,f(x)≠f(x+T) | B. | ?x∈R,f(x)≠f(x+T) | C. | ?x∈R,f(x)=f(x+T) | D. | ?x∈R,f(x)=f(x+T) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?α∈R,使得sin2α+cos2α=1 | B. | ?α∈R,使得sin2α+cos2α≠1 | ||
C. | ?α∈R,使得sin2α+cos2α=1 | D. | ?α∈R,使得sin2α+cos2α≠1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{4}{3}$P,D | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com