18.若i為虛數(shù)單位,設(shè)復(fù)數(shù)z滿足|z|=1,則|z-1+i|的最大值為( 。
A.$\sqrt{2}$-1B.2-$\sqrt{2}$C.$\sqrt{2}$+1D.2+$\sqrt{2}$

分析 由題意畫出圖形,再由|z-1+i|=|z-(1-i)|的幾何意義,即動點Z到定點P(1,-1)的距離求解.

解答 解:|z-1+i|=|z-(1-i)|,其幾何意義為動點Z到定點P(1,-1)的距離,
又|z|=1,如圖:

則|z-1+i|的最大值為$\sqrt{2}+1$.
故選:C.

點評 本題考查復(fù)數(shù)模的求法,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)求f(-$\frac{5π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖2,“六芒星”是由兩個全等正三角形組成,中心重合于點O且三組對邊分別平行.點A,B是“六芒星”(如圖1)的兩個頂點,動點P在“六芒星”上(內(nèi)部以及邊界),若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,則x+y的取值范圍是( 。
A.[-4,4]B.$[{-\sqrt{21},\sqrt{21}}]$C.[-5,5]D.[-6,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-ax3-x.
(Ⅰ)直線y=k(x-1)為曲線y=f(x)在(1,f(1))處的切線,求實數(shù)k;
(Ⅱ)若$a≤\frac{e}{2}$,證明:f(x)>lnx-xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.復(fù)數(shù)(2+i)•i的模為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,則“a>b”是“l(fā)na>lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.既不充分也不必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)a∈N*,a<28,則等式$(28-a)(29-a)…(35-a)=A_{35-a}^m$中m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知方程2x2-(m+1)x+m=0有兩個不等正實根,則實數(shù)m的取值范圍是( 。
A.$0<m≤3-2\sqrt{2}$或$m≥3+2\sqrt{2}$B.$m<3-2\sqrt{2}$或$m>3+2\sqrt{2}$
C.$0<m<3-2\sqrt{2}$或$m>3+2\sqrt{2}$D.$m≤3-2\sqrt{2}$或$m≥3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知i為虛數(shù)單位,復(fù)數(shù)z滿足iz+2=z-2i,則|z|=2.

查看答案和解析>>

同步練習(xí)冊答案