【題目】三棱錐P﹣ABC的四個頂點都在球O的球面上,已知PA,PB,PC兩兩垂直,PA=1,PB+PC=4,當三棱錐的體積最大時,球心O到平面ABC的距離是( )
A.
B.
C.
D. ﹣
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖的算法思路源于歐幾里得名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖,若輸入m,n分別為225、135,則輸出的m=( )
A.5
B.9
C.45
D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當m=3時,求函數(shù)f(x)的最大值;
(2)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點F( ),過點F作平行于y軸的直線截橢圓C所得的弦長為 . (Ⅰ)求橢圓的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于P,Q兩點,N點在直線x=﹣1上,若△NPQ是等邊三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點,M是棱PC的中點,PA=PD=PC,BC= AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P﹣AD﹣C為60°,求直線PB與平面QMB所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,把位于直線y=k與直線y=l(k、l均為常數(shù),且k<l)之間的點所組成區(qū)域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區(qū)域”,設(shè)f(x)為二次函數(shù),三點(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區(qū)域”,如果點(t,t+1)位于“﹣1⊕3型帶狀區(qū)域”,那么,函數(shù)y=|f(t)|的最大值為( )
A.
B.3
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx+λcosx的圖像的一個對稱中心是點( ,0),則函數(shù)g(x)=λsinxcosx+sin2x的圖像的一條對稱軸是直線( )
A.x=
B.x=
C.x=
D.x=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對某班男、女學(xué)生學(xué)習(xí)時間進行調(diào)查,學(xué)習(xí)時間按整小時統(tǒng)計,調(diào)查結(jié)果繪成折線圖如下:
(Ⅰ)已知該校有400名學(xué)生,試估計全校學(xué)生中,每天學(xué)習(xí)不足4小時的人數(shù);
(Ⅱ)若從學(xué)習(xí)時間不少于4小時的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機變量X的分布列;
(Ⅲ)試比較男生學(xué)習(xí)時間的方差 與女生學(xué)習(xí)時間方差 的大。ㄖ恍鑼懗鼋Y(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com