已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn=,證明:c1+c2+c3+…+cn<3.
(1)an=2n-1.,見解析(2)見解析
【解析】(1)因為點(an+1,S2n-1)在函數(shù)f(x)的圖象上,所以=S2n-1.
令n=1,n=2,得即解得a1=1,d=2(d=-1舍去),則an=2n-1.
由(bn-bn+1)·g(bn)=f(bn),
得4(bn-bn+1)(bn-1)=(bn-1)2.
由題意bn≠1,所以4(bn-bn+1)=bn-1,
即3(bn-1)=4(bn+1-1),所以.
所以數(shù)列{bn-1}是以1為首項,公比為的等比數(shù)列.
(2由(1),得bn-1=n-1.
cn===.
令Tn=c1+c2+c3+…+cn,
則Tn=,①
Tn=,②
①-②得,Tn=++++…+-=1+-=2--=2-.所以Tn=3-.
所以c1+c2+c3+…+cn=3-<3.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用19練習卷(解析版) 題型:解答題
設M是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應的特征向量;
(2)求逆矩陣M-1以及橢圓=1在M-1的作用下的新曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用13練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,以橢圓=1(a>b>0)上的一點A為圓心的圓與x軸相切于橢圓的一個焦點,與y軸相交于B、C兩點,若△ABC是銳角三角形,則該橢圓的離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用11練習卷(解析版) 題型:解答題
已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準線,N為l上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AM=MN,求∠AMB的余弦值;
(3)設過A、F、N三點的圓與y軸交于P、Q兩點,當線段PQ的中點為(0,9)時,求這個圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用11練習卷(解析版) 題型:填空題
已知圓的方程為x2+y2-6x-8y=0,設該圓中過點(3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用10練習卷(解析版) 題型:填空題
已知首項為正數(shù)的等差數(shù)列{an}的前n項和為Sn,若a1 006和a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練4練習卷(解析版) 題型:填空題
已知一個正方體的所有頂點在一個球面上.若球的體積為π,則正方體的棱長為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練3練習卷(解析版) 題型:填空題
已知正方形ABCD的邊長為2, E為CD的中點,則·=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練1練習卷(解析版) 題型:選擇題
已知四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為( )
A. B. C. D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com